Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (7): 1-11    DOI: 10.13523/j.cb.2202052
    
The Sensitivity of Different Neural Cells to Hypoxia
Wen-yu HU1,**,Shuo-shuo LI2,**,Jin-bo CHENG2,***(),Zeng-qiang YUAN2,***()
1. School of Medicine, University of South China, Hengyang 421001, China
2. Institute of Military Cognition and Brain Science, Academy of Military Medical Sciences, Beijing 100850, China
Download: HTML   PDF(4842KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: In order to illustrate the hypoxia-induced changes of neural cells in inflammatory response, oxidative stress, and energy metabolism process and to compare the sensitivity of neural cells’ responses to hypoxia. Methods: Different types of neural cells (BV2, N9, Gl261, HT22) were treated with hypoxia (0.1% O2, 5% CO2) for 0-24 hours. Cell proliferation was detected by Cell Counting Kit-8 method and cell viability was assayed by CellTiter-Glo Luminescent Cell Viability Assay. Total RNA was extracted by Trizol reagent, and the inflammation, oxidative stress, and energy metabolism-related genes expression were measured by quantitative real-time PCR and Western blot. The ROS production was detected by flow cytometer with fluorescence probe. Results: Hypoxia stimulation decreased cell proliferation and cell viability. The hypoxia-induced changes of microglial cells (BV2 and N9) were mainly involved in inflammatory response and glucose metabolism process. The changes of astrocytes Gl261 and neural cell HT22 were mainly involved in glucose metabolism process. Hypoxia stimulation significantly increased oxidative stress in microglia and astrocytes. Conclusion: Different types of neural cells have different degrees of sensitivity in response to hypoxic stimulation. In terms of energy metabolism and inflammatory response, microglia are more sensitive to hypoxia treatment, which is manifested as a significant up-regulation of glycolytic enzymes and inflammation genes, whereas microglia and astrocytes are more sensitive to hypoxia treatment in terms of oxidative stress, which is indicated by their quick response and significant increase of ROS production.



Key wordsHypoxia      Neural cells      Inflammation      Oxidative stress      Energy metabolism     
Received: 28 February 2022      Published: 03 August 2022
ZTFLH:  R34  
Corresponding Authors: Wen-yu HU,Shuo-shuo LI,Jin-bo CHENG,Zeng-qiang YUAN     E-mail: cheng_jinbo@126.com;zyuan620@yahoo.com
Cite this article:

Wen-yu HU,Shuo-shuo LI,Jin-bo CHENG,Zeng-qiang YUAN. The Sensitivity of Different Neural Cells to Hypoxia. China Biotechnology, 2022, 42(7): 1-11.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2202052     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I7/1

Gene Forward primer Reverse primer
β-actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
HK1 CTGGGGAGACTAGCCCTGT TGTCCCATAGTGTAGAGGTGATG
HK2 TGATCGCCTGCTTATTCACGG AACCGCCTAGAAATCTCCAGA
LDHA TGTCTCCAGCAAAGACTACTGT GACTGTACTTGACAATGTTGGGA
PDK1 GGACTTCGGGTCAGTGAATGC TCCTGAGAAGATTGTCGGGGA
PGK1 ATGTCGCTTTCCAACAAGCTG GCTCCATTGTCCAAGCAGAAT
PKM2 GCCGCCTGGACATTGACTC CCATGAGAGAAATTCAGCCGAG
iNOS GTTCTCAGCCCAACAATACAAGA GTGGACGGGTCGATGTCAC
SOD GCCCGCTAAGTGCTGAGTC CCAGAAGGATAACGGATGCCA
CAT AGCGACCAGATGAAGCAGTG TCCGCTCTCTGTCAAAGTGTG
IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC
CD206 CTCTGTTCAGCTATTGGACGC CGGAATTTCTGGGATTCAGCTTC
TNF-α CAGGCGGTGCCTATGTCTC CGATCACCCCGAAGTTCAGTAG
IL-6 GCTACCAAACTGGATATAATCAGGA CCAGGTAGCTATGGTACTCCAGAA
IL-1β TGTAATGAAAGACGGCACACC TCTTCTTTGGGTATTGCTTGG
Table 1 qRT-PCR primer sequence
Fig.1 Hypoxia stimulation decreased cell proliferation Neural cell proliferation curve [(BV2(a),N9(b),Gl261(c),HT22(d)] under hypoxia/normoxia treatment for 0-36 h. n=5;Student t-test; * P<0.05, ** P<0.01, *** P<0.001; ns: No significant. Data are presented as mean±SEM
Fig.2 Hypoxia treatment decreased cell viability Intracellular ATP content across 4 neural cell lines at different timepoint of hypoxia [(BV2(a),N9(b),Gl261(c),HT22(d)] under hypoxia/normoxia treatment for 0-36 h. n=3; Student t-test; * P<0.05, ** P<0.01, *** P<0.001; ns: No significant. Data are presented as mean ± SEM
Fig.3 Hypoxia treatment altered glucose metabolism in varies neural cells Dynamic alteration of quantitative real-time PCR was utilized to evaluate the mRNA level of glucose metabolism-related genes (HK1,HK2,LDHA,PDK1,PGK1,PKM2) in mRNA level in BV2 (a),N9 (b),Gl261 (c),HT22 (d) under hypoxia treatment. n=3; ND: Not determined
Fig.4 Changes in protein level after hypoxia Representative images of immunoblotting of glucose metabolism-related genes (HK1,HK2,PKM2,LDHA),oxidative stress-related genes (iNOS,SOD) in different neural cells [BV2 (a),N9 (b),Gl261 (c),HT22 (d)] under hypoxia treatment
Fig.5 Hypoxia treatment induced ROS generation in different neural cells ROS levels of neural cells [BV2 (a),N9 (b),Gl261 (c),HT22 (d)], treated with hypoxia, were determined by flow cytometry. NC: Negative control; PC: Positive control
Fig.6 Hypoxia treatment increased neural cells oxidative stress mRNA level of oxidative stress-related genes (iNOS,SOD,CAT) in different neural cells [BV2 (a),N9 (b),Gl261 (c),HT22 (d)] under hypoxia treatment. n=3; ND: Not determined
Fig.7 Inflammatory response in different neural cells after hypoxia Quantitative real-time PCR was utilized to evaluate the mRNA level of inflammatory factor (anti-inflammatory: IL-10,Arg1,CD206; pro-inflammatory: TNF-α,IL-6,IL-1β) in different neural cells [BV2 (a),N9 (b),Gl261 (c),HT22 (d)] under hypoxia treatment. n=3; ND: Not determined
[1]   Wilson M H, Newman S, Imray C H. The cerebral effects of ascent to high altitudes. The Lancet Neurology, 2009, 8(2): 175-191.
doi: 10.1016/S1474-4422(09)70014-6
[2]   Luks A M, Swenson E R, Bärtsch P. Acute high-altitude sickness. European Respiratory Review, 2017, 26(143): 160096.
doi: 10.1183/16000617.0096-2016
[3]   Leissner K B, Mahmood F U. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. Journal of Anesthesia, 2009, 23(4): 543-553.
doi: 10.1007/s00540-009-0787-7 pmid: 19921365
[4]   West J B. High-altitude medicine. The Lancet Respiratory Medicine, 2015, 3(1): 12-13.
doi: 10.1016/S2213-2600(14)70238-3
[5]   Ma J Q, Wang C Y, Sun Y B, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia. International Journal of Pharmaceutics, 2020, 591: 120002.
doi: 10.1016/j.ijpharm.2020.120002
[6]   Galinsky R, Lear C A, Dean J M, et al. Complex interactions between hypoxia-ischemia and inflammation in preterm brain injury. Developmental Medicine and Child Neurology, 2018, 60(2): 126-133.
doi: 10.1111/dmcn.13629 pmid: 29194585
[7]   Zhang P, Ke J, Li Y, et al. Long-term exposure to high altitude hypoxia during pregnancy increases fetal heart susceptibility to ischemia/reperfusion injury and cardiac dysfunction. International Journal of Cardiology, 2019, 274: 7-15.
doi: S0167-5273(18)31904-1 pmid: 30017521
[8]   Lafuente J V, Bermudez G, Camargo-Arce L, et al. Blood-brain barrier changes in high altitude. CNS & Neurological Disorders Drug Targets, 2016, 15(9): 1188-1197.
[9]   Semenza G L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends in Molecular Medicine, 2001, 7(8): 345-350.
doi: 10.1016/s1471-4914(01)02090-1 pmid: 11516994
[10]   Kierans S J, Taylor C T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. The Journal of Physiology, 2021, 599(1): 23-37.
doi: 10.1113/JP280572
[11]   Murray A J, Montgomery H E, Feelisch M, et al. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochemical Society Transactions, 2018, 46(3): 599-607.
doi: 10.1042/BST20170502
[12]   Ge R L, Simonson T S, Gordeuk V, et al. Metabolic aspects of high-altitude adaptation in Tibetans. Experimental Physiology, 2015, 100(11): 1247-1255.
doi: 10.1113/EP085292
[13]   Gaur P, Prasad S, Kumar B, et al. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. International Journal of Biometeorology, 2021, 65(4): 601-615.
doi: 10.1007/s00484-020-02037-1
[14]   Iturriaga R, Moya E A, del Rio R. Inflammation and oxidative stress during intermittent hypoxia: the impact on chemoreception. Experimental Physiology, 2015, 100(2): 149-155.
doi: 10.1113/expphysiol.2014.079525 pmid: 25523440
[15]   Ramakrishnan S, Anand V, Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. Journal of Neuroimmune Pharmacology, 2014, 9(2): 142-160.
doi: 10.1007/s11481-014-9531-7 pmid: 24610033
[16]   Bocan T M, Stafford R G, Brown J L, et al. Characterization of brain inflammation, apoptosis, hypoxia, blood-brain barrier integrity and metabolism in venezuelan equine encephalitis virus (VEEV TC-83) exposed mice by in vivo positron emission tomography imaging. Viruses, 2019, 11(11): 1052.
[17]   Xu T X, Zhao S Z, Dong M, et al. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia. European Review for Medical and Pharmacological Sciences, 2016, 20(3): 399-406.
doi: 10268 pmid: 26914112
[18]   Chis I C, Baltaru D, Dumitrovici A, et al. Protective effects of quercetin from oxidative/nitrosative stress under intermittent hypobaric hypoxia exposure in the rat’s heart. Physiology International, 2018, 105(3): 233-246.
doi: 10.1556/2060.105.2018.3.23
[19]   Liu L P, Cash T P, Jones R G, et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Molecular Cell, 2006, 21(4): 521-531.
doi: 10.1016/j.molcel.2006.01.010
[20]   Pissarek M, Garcia de Arriba S, Schäfer M, et al. Changes by short-term hypoxia in the membrane properties of pyramidal cells and the levels of purine and pyrimidine nucleotides in slices of rat neocortex; effects of agonists and antagonists of ATP-dependent potassium channels. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1998, 358(4): 430-439.
doi: 10.1007/PL00005275
[21]   Semenza G L, Jiang B H, Leung S W, et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 1996, 271(51): 32529-32537.
doi: 10.1074/jbc.271.51.32529 pmid: 8955077
[22]   Massari F, Ciccarese C, Santoni M, et al. Metabolic phenotype of bladder cancer. Cancer Treatment Reviews, 2016, 45: 46-57.
doi: 10.1016/j.ctrv.2016.03.005
[23]   Gwak G Y, Yoon J H, Kim K M, et al. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. Journal of Hepatology, 2005, 42(3): 358-364.
doi: 10.1016/j.jhep.2004.11.020
[24]   Riddle S R, Ahmad A, Ahmad S, et al.Hypoxia induces hexokinase II gene expression in human lung cell line A549. American Journal of Physiology Lung Cellular and Molecular Physiology, 2000, 278(2): L407-L416.
doi: 10.1152/ajplung.2000.278.2.L407
[25]   Guillemin K, Krasnow M A. The hypoxic response: huffing and HIFing. Cell, 1997, 89(1): 9-12.
pmid: 9094708
[26]   Koch A, Ebert E V, Seitz T, et al. Characterization of glycolysis-related gene expression in malignant melanoma. Pathology - Research and Practice, 2020, 216(1): 152752.
doi: 10.1016/j.prp.2019.152752
[27]   Brunelle J K, Bell E L, Quesada N M, et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 2005, 1(6): 409-414.
pmid: 16054090
[28]   Kaelin W G Jr. ROS: really involved in oxygen sensing. Cell Metabolism, 2005, 1(6): 357-358.
doi: 10.1016/j.cmet.2005.05.006
[29]   Coimbra-Costa D, Alva N, Duran M, et al. Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain. Redox Biology, 2017, 12: 216-225.
doi: S2213-2317(17)30119-2 pmid: 28259102
[30]   Vincenzi F, Ravani A, Pasquini S, et al. Pulsed electromagnetic field exposure reduces hypoxia and inflammation damage in neuron-like and microglial cells. Journal of Cellular Physiology, 2017, 232(5): 1200-1208.
doi: 10.1002/jcp.25606
[31]   Martínez-Romero R, Cañuelo A, Siles E, et al. Nitric oxide modulates hypoxia-inducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. Journal of Applied Physiology (Bethesda, Md: 1985), 2012, 112(5): 816-823.
doi: 10.1152/japplphysiol.00898.2011
[32]   Lu D Y, Liou H C, Tang C H, et al. Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1α. Biochemical Pharmacology, 2006, 72(8): 992-1000.
doi: 10.1016/j.bcp.2006.06.038
[33]   Cazevieille C, Muller A, Meynier F, et al. Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Radical Biology & Medicine, 1993, 14(4): 389-395.
doi: 10.1016/0891-5849(93)90088-C
[34]   McGarry T, Biniecka M, Veale D J, et al. Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 2018, 125: 15-24.
doi: S0891-5849(18)30145-X pmid: 29601945
[35]   Merelli A, Repetto M, Lazarowski A, et al. Hypoxia, oxidative stress, and inflammation: three faces of neurodegenerative diseases. Journal of Alzheimer’s Disease: JAD, 2021, 82(s1): S109-S126.
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[3] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[4] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[5] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[6] HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases[J]. China Biotechnology, 2015, 35(10): 72-77.
[7] JIN Chao, LIU Jie, JI Jing, WANG Gang, CAO Hai-yan, WU Jiang. Overexpression of LcCHYB to Enhance the Tolerance to Oxidative Stress of Eustoma Grandiflorum[J]. China Biotechnology, 2015, 35(1): 27-33.
[8] GAO Hai-ling, JI Jing, WANG Gang, WU Guang-xia, RONG Fei, GUAN Chun-feng, JIN Chao. Expression Studies of Ascorbate Peroxidase from Lycium chinense Mill. in E.coli and Yeast[J]. China Biotechnology, 2014, 34(7): 24-29.
[9] ZHOU Nian, HU Ning, GONG Xuan, WANG Chang-dong, LIAO Jun-yi, LIANG Xi, HUANG Wei. Construction and Identification of Recombinant Adenovirus Ad-HIF1α[J]. China Biotechnology, 2014, 34(3): 34-40.
[10] MA Pan, LIU Hong-tao, XU Qing-song, BAI Xue-fang, DU Yu-guang. Effects of Chitosan Oligosaccharides Attenuating Menadione-induced Injury in Macrophages[J]. China Biotechnology, 2011, 31(06): 18-21.
[11] . Express and regulation of Animal anti-hypoxia stress-related genes[J]. China Biotechnology, 2010, 30(10): 0-0.
[12] FANG Song-gang, LIU Di-qiu, LI Zhong, ZOU Gui-wei, WANG Guang-yong, TIAN Rong-huan. Express and Regulation of Animal Anti-hypoxia Stress-related Genes[J]. China Biotechnology, 2010, 30(10): 79-85.
[13] HUANG Yin-Xia, WEI Yang-Jie, CUI Chuan-Jue, ZHANG Xiao-Ling, LI Jun. Tumor necrosis factor-a-induced expression of heat shock protein 70 in Neonatal rat ventricular cardiomyocytes[J]. China Biotechnology, 2010, 30(09): 1-6.
[14] HU Xiu-Li- Liu-Jian-Li- Cao-Xiang-Yu- Hou-Fang-Fang- Gao-Bing. Identification of a functional domain with in DHCR24 that is required for its Antioxidative function[J]. China Biotechnology, 2009, 29(05): 50-54.
[15] Sang-Soo KWAK Haeng-Soon LEE Xiao-Li Yang. Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase[J]. China Biotechnology, 2008, 28(3): 25-31.