Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 124-138    DOI: 10.13523/j.cb.2202049
    
Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development
YANG Yi,ZHANG Qing-yun,MEI Kun-rong**()
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(977KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Since the outbreak of novel coronavirus disease in late 2019, it has been a global public safety emergency to efficiently prevent and control the epidemic. Vaccine is one of the means to effectively prevent the virus from infecting humans, protect high-risk groups from rapid disease progression and minimize further spread of the virus-caused epidemic. Subunit vaccine is a safe and effective strategy that contains recombinant protein antigens of specific viral components and vaccine adjuvant that helps increasing the immunogenicity of the antigen. Since the specific immunogenic viral antigen can activate the immune system, which thus produces antibodies against immunodominant epitopes on the surface of the protein antigen, it offers subunit vaccine a high degree of protection and safety. The major severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) subunit vaccines that have been marketed and are currently in the clinical stage are reviewed. The design concepts of various antigens and types of vaccine adjuvants, the protective capacity, and the research progress of subunit vaccine candidates are introduced. The applications and technical advantages of subunit vaccine are analyzed. This review is expected to provide suggestions for subunit vaccine development and global epidemic prevention and control.



Key wordsCOVID-19      SARS-CoV-2      Subunit vaccine     
Received: 28 February 2022      Published: 17 June 2022
ZTFLH:  Q819  
Corresponding Authors: Kun-rong MEI     E-mail: kmei@tju.edu.cn
Cite this article:

YANG Yi,ZHANG Qing-yun,MEI Kun-rong. Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development. China Biotechnology, 2022, 42(5): 124-138.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2202049     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/124

Fig.1 Antigen candidates of SARS-CoV-2 subunit vaccine (a) Schematic diagram of the SARS-CoV-2 virion (b) Schematic diagram of S protein trimer in the pre-fusion conformation. TM: Transmembrane region; CT: Cytoplasmic tail (c) Subunit vaccine antigenic design based on S protein (d) Subunit vaccine antigenic design based on RBD (e) Peptide vaccine antigenic design based on specific antigenic epitopes
佐剂 组成 应用 参考文献
铝佐剂 氢氧化铝 ZF2001/EpiVacCorona/Soberana 01/Soberana 02/Soberana Plus/Abdala/NVSI-06-07/NVSI-06-08/V-01/GBP510/ Recombinant COVID-19 Vaccine (Sf9 cells) [37,53-60]
CpG/铝佐剂 CpG和氢氧化铝 SCB-2019/MVC-COV1901/Corbevax/202-CoV [61-64]
Matrix-M 皂苷、胆固醇和磷脂 NVX-CoV2373/SII B.1.351/SII B.1.617.2/SII Bivalent [65]
AS03 α-生育酚、角鲨烯和聚山梨醇酯80 CoV2 preS dTM/GBP510 [59,66]
MF59 山梨醇三油酸酯、角鲨烯和聚山梨醇酯80 S-clamp [67]
Advax-SM Delta-菊粉颗粒和CpG COVAX-19® (Spikogen®) [68]
Table 1 Adjuvants commonly used in SARS-CoV-2 subunit vaccine development
疫苗名称 序列及抗原优化 研发单位 佐剂 表达系统 获批情况 参考文献
基于S蛋白设计的亚单位疫苗
MVC-COV1901 1~1208 a.a.R682G/R683S/
R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签
基亚生物 CpG/
铝佐剂
哺乳动物细胞 获批:巴拉圭,索马里兰,中国台湾 [69]
COVAX-19®
(Spikogen®)
/* Vaxine/Cinnagen Advax-SM 昆虫细胞 紧急使用:伊朗 [68]
基于S蛋白设计的纳米颗粒亚单位疫苗
NVX-CoV2373 1~1273 a.a.R682Q/R683Q/R685Q/K986P/V987P 诺瓦瓦克斯 Matrix-M 昆虫细胞 获批:英国,澳大利亚,韩国等36个国家 [65,70-71]
Covovax 1~1273 a.a.R682Q/R683Q/
R685Q/K986P/V987P
诺瓦瓦克斯/
印度血清研究所
Matrix-M 昆虫细胞 紧急使用:印度,印度尼西亚,菲律宾 [72]
基于RBD单体设计的亚单位疫苗
Corbevax 332~549 a.a. Biological E CpG/
铝佐剂
酵母 紧急使用:印度 [63,73]
Abdala
(CIGB-66)
331~529 a.a. 古巴基因工程与
生物技术中心
铝佐剂 酵母 获批:古巴,墨西哥,委内瑞拉等6个国家 [58]
基于RBD二聚体设计的亚单位疫苗
ZF2001 319~537 a.a. 智飞龙科马/
中国科学院微
生物研究所
铝佐剂 哺乳动物细胞 获批:中国,哥伦比亚,印度尼西亚等4个国家 [53,74]
Soberana
Plus
319~541 a.a. 古巴芬利疫苗
研究所
铝佐剂 哺乳动物细胞 获批:古巴 [60]
基于RBD三聚体设计的亚单位疫苗
NVSI-06-07 319~537 a.a. 中国生物研究院 铝佐剂 哺乳动物细胞 紧急使用:阿联酋 [54]
NVSI-06-08 319~537 a.a.野生型/Beta突变株(K417N/E484K/N501Y)/
Kappa突变株(L452R/E484K)
中国生物研究院 铝佐剂 哺乳动物细胞 紧急使用:阿联酋 [75]
基于RBD设计的纳米颗粒亚单位疫苗
Soberana 02 319~541 a.a.连接TT蛋白** 古巴芬利疫苗
研究所
铝佐剂 哺乳动物细胞 获批:伊朗,古巴,尼加拉瓜等4个国家 [76]
基于多肽设计的亚单位疫苗
EpiVac
Corona
连接SARS-CoV-2 N蛋白的多肽片段* 俄罗斯矢量国家
病毒学与生物
技术研究中心
铝佐剂 化学合成 获批:柬埔寨,俄罗斯,委内瑞拉等4个国家 [37]
Table 2 Approved/emergency used SARS-CoV-2 subunit vaccines
候选疫苗名称 序列及抗原优化 研发单位 佐剂 临床进展 表达系统 参考文献
基于S蛋白设计的亚单位疫苗
COVAC-2 S1* 萨斯喀彻温大学 SWE 2, NCT05209009 / [93]
Versamune-
CoV-2FC
S1* Farmacore / 1/2, NCT05016934 / [94]
SCB-2019 1~1211 a.a.C端引入三聚化标签 三叶草生物制药/
德纳维制药
CpG/
铝佐剂
3, NCT05012787 哺乳动物细胞 [61,78]
S-clamp 1~1204 a.a.将680~690 a.a.替换为GSG,C端引入clamp三聚标签 CSL/Seqirus/
昆士兰大学
MF59 2/3, NCT04806529 哺乳动物细胞 [67]
CoV2 preS dTM 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 赛诺菲/
葛兰素史克
AS03 3, NCT05124171
PACTR202011523101903
昆虫细胞 [66]
MVC-COV1901** 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 基亚生物 CpG/
铝佐剂
4, NCT05079633 哺乳动物细胞 [62,69,117]
202-CoV R682G/R683G/A684S/R685G/K986P/V987P,C端连接T4纤维蛋白三聚标签* 上海泽润生物/
沃森生物
CpG∕
铝佐剂
1, NCT04982068 哺乳动物细胞 [64]
YS-SC2-010 1~1208 a.a.R682G/R683S/R685S/K986P/V987P,C端连接T4纤维蛋白三聚标签 依生生物 PIKA 1, ACTRN12621001009808 哺乳动物细胞 [80-81,118]
COVAX-19®
(Spikogen®)**
* Vaxine/Cinnagen Advax-SM 3, IRCT
20150303021315N24
昆虫细胞 [68,119]
SCB-2020S Beta突变株* 三叶草生物制药 CAS-1 2, NCT04950751 哺乳动物细胞 [114]
Bivalent
(2-antigen)
vaccine
野生型及Beta突变株* 赛诺菲∕
葛兰素史克
3, NTC04904549 昆虫细胞 [113]
基于S蛋白设计的纳米颗粒亚单位疫苗
NVX-CoV2373** 1~1273 a.a.R682Q/R683Q/R685Q/K986P/V987P 诺瓦瓦克斯 Matrix-M 3, NCT04611802 昆虫细胞 [65,71,120]
SpFN 12~1158 a.a.R682G/R683S/R685S/K986P/V987P,C端突变修饰并连接铁蛋白 美国沃尔特里德
陆军研究所
QS-21 1, NCT04784767 哺乳动物细胞 [85,91]
SII B.1.351 Beta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029856 昆虫细胞 [112]
SII B.1.617.2 Delta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029858 昆虫细胞 [112]
SII Bivalent 野生型及Beta突变株* 诺瓦瓦克斯 Matrix-M 1∕2, NCT05029857 昆虫细胞 [112]
基于RBD单体设计的亚单位疫苗
Recombinant
COVID-19 Vaccine
(Sf9 cells)
319~545 a.a. 中国四川大学
华西医院
铝佐剂 3, NCT04887207 昆虫细胞 [98-99]
Abdala
(CIGB-66)**
331~529 a.a. 古巴基因工程与
生物技术中心
铝佐剂 3, RPCEC00000359 酵母 [58,97,121]
Corbevax** 332~549 a.a.C538A Biological E CpG∕
铝佐剂
3, CTRI∕2021∕
08∕036074
酵母 [63,122]
候选疫苗名称 序列及抗原优化 研发单位 佐剂 临床进展 表达系统 参考文献
基于RBD二聚体设计的亚单位疫苗
Soberana 01 319~541 a.a. 古巴芬利疫
苗研究所
铝佐剂∕脑
膜炎奈瑟菌
外膜囊泡
2, RPCEC00000366 哺乳动物细胞 [60]
VAX1 C端连接Fc蛋白* Baiya Phytopharm 1, NCT04953078 植物细胞 [103]
AKS-452 C端连接Fc蛋白* 格罗宁根大学医
学中心∕Akston
Montanide
ISA 720
2, NCT05124483 哺乳动物细胞 [102]
V-01 319~541 a.a.N端连接IFN-α,C端连接Fc蛋白 丽珠医药 铝佐剂 3, NCT05096832 哺乳动物细胞 [56]
UB-612 340~359 a.a.C端连接Fc蛋白,并加入SARS-CoV-2高保守性多肽和公司专利多肽UBITh®1a Vaxxinity CpG∕AlPO4 2∕3, NCT04683224 哺乳动物细胞 [101]
PHH-1V 333~526 a.a.Alpha突变株 (N501Y) 和Beta突变株(K417N∕E484K∕N501Y) Hipra 3, NCT05246137 哺乳动物细胞 [115]
基于RBD三聚体设计的亚单位疫苗
ReCOV N端连接S蛋白N端结构域,C端连接T4纤维蛋白标签* 瑞科生物 BFA03 2∕3, NCT05084989 哺乳动物细胞 [104]
NVSI-06-08** 319~537 a.a.野生型,Beta突变株(K417N∕E484K∕N501Y)及Kappa突变株(L452R∕E484K) 中国生物研究院 铝佐剂 1∕2, NCT05069129 哺乳动物细胞 [55,123]
基于RBD设计的纳米颗粒亚单位疫苗
Soberana 02** 319~541 a.a.C端连接TT蛋白 古巴芬利疫苗
研究所
铝佐剂 3, RPCEC00000354 哺乳动物细胞 [76,124]
KBP-201 加入TMV* 美国肯塔基州
生物加工公司
CpG 1∕2, NCT04473690 烟草植物细胞 [125]
EuCorVac-19 319~541 a.a.加入脂质体 EuBiologics 单磷酸酯
A∕QS-21
1∕2, NCT04783311 哺乳动物细胞 [106]
GBP510 328~531 a.a.加入I53-50蛋白 SK∕CEPI AS03或
铝佐剂
3, NCT05007951 哺乳动物细胞 [59]
基于多肽设计的亚单位疫苗
CoVac-1 S235~249∕N50~64, 221~235∕E56~70∕M176~190∕ORF843~57 图宾根大学 XS15∕
Montanide
ISA51 VG
1∕2, NCT04954469 化学合成 [109]
Table 3 Major SARS-CoV-2 subunit vaccines in clinical study
[1]   Zhu N, Zhang D Y, Wang W L, et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 2020, 382(8): 727-733.
doi: 10.1056/NEJMoa2001017 pmid: 31978945
[2]   Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579 (7798): 265-269.
doi: 10.1038/s41586-020-2008-3
[3]   Doherty M, Schmidt-Ott R, Santos J I, et al. Vaccination of special populations: protecting the vulnerable. Vaccine, 2016, 34(52): 6681-6690.
doi: S0264-410X(16)31061-1 pmid: 27876197
[4]   Lee A R Y B, Wong S Y, Chai L Y A, et al. Efficacy of COVID-19 vaccines in immunocompromised patients: systematic review and meta-analysis. BMJ (Clinical Research Ed), 2022, 376: e068632.
[5]   Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 2019, 17 (3): 181-192.
doi: 10.1038/s41579-018-0118-9
[6]   Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 2003, 348(20): 1967-1976.
doi: 10.1056/NEJMoa030747
[7]   Zaki A M, van Boheemen S, Bestebroer T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 2012, 367(19): 1814-1820.
doi: 10.1056/NEJMoa1211721 pmid: 23075143
[8]   Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579 (7798): 270-273.
doi: 10.1038/s41586-020-2012-7
[9]   Yao H P, Song Y T, Chen Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell, 2020, 183(3): 730-738.e13.
doi: 10.1016/j.cell.2020.09.018
[10]   Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2): 271-280.e8.
doi: S0092-8674(20)30229-4 pmid: 32142651
[11]   Wrapp D, Wang N S, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
doi: 10.1126/science.abb2507
[12]   Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581 (7807): 215-220.
doi: 10.1038/s41586-020-2180-5
[13]   Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581 (7807): 221-224.
doi: 10.1038/s41586-020-2179-y
[14]   Wang Q H, Zhang Y F, Wu L L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904.e9.
doi: 10.1016/j.cell.2020.03.045
[15]   Cai Y F, Zhang J, Xiao T S, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511): 1586-1592.
doi: 10.1126/science.abd4251
[16]   Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588 (7838): 498-502.
doi: 10.1038/s41586-020-2665-2
[17]   Lauring A S, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathogens, 2010, 6(7): e1001005.
doi: 10.1371/journal.ppat.1001005
[18]   Li Q Q, Wu J J, Nie J H, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell, 2020, 182(5): 1284-1294.e9.
doi: 10.1016/j.cell.2020.07.012
[19]   Volz E, Hill V, McCrone J T, et al. Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 2021, 184(1): 64-75.e11.
doi: 10.1016/j.cell.2020.11.020
[20]   Garcia-Beltran W F, Lam E C, St Denis K, et al. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021, 184(9): 2372-2383.e9.
doi: 10.1016/j.cell.2021.03.013 pmid: 33743213
[21]   Faria N R, Mellan T A, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 2021, 372(6544): 815-821.
doi: 10.1126/science.abh2644 pmid: 33853970
[22]   Dhar M S, Marwal R, Vs R, et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science, 2021, 374(6570): 995-999.
doi: 10.1126/science.abj9932
[23]   Tegally H, Wilkinson E, Lessells R J, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nature Medicine, 2021, 27 (3): 440-446.
doi: 10.1038/s41591-021-01255-3
[24]   Yadav P D, Gupta N, Potdar V, et al. Isolation and genomic characterization of SARS-CoV-2 Omicron variant obtained from human clinical specimens. Viruses, 2022, 14(3): 461.
doi: 10.3390/v14030461
[25]   Davies N G, Abbott S, Barnard R C, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021, 372(6538): eabg3055.
doi: 10.1126/science.abg3055
[26]   Wang P, Nair M S, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593 (7857): 130-135.
doi: 10.1038/s41586-021-03398-2
[27]   Wang P F, Casner R G, Nair M S, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe, 2021, 29(5): 747-751.e4.
[28]   Li B, Deng A, Li K, et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 Delta variant. Nature Communications, 2022, 13: 460.
doi: 10.1038/s41467-022-28089-y
[29]   Cele S, Jackson L, Khoury D S, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature, 2022, 602 (7898): 654-656.
doi: 10.1038/s41586-021-04387-1
[30]   Liu L, Iketani S, Guo Y, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602 (7898): 676-681.
doi: 10.1038/s41586-021-04388-0
[31]   Ge J, Wang R, Ju B, et al. Antibody neutralization of SARS-CoV-2 through ACE 2 receptor mimicry. Nature Communications, 2021, 12: 250.
doi: 10.1038/s41467-020-20501-9
[32]   Piccoli L, Park Y J, Tortorici M A, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell, 2020, 183(4): 1024-1042.e21.
doi: 10.1016/j.cell.2020.09.037 pmid: 32991844
[33]   Barnes C O, West A P Jr, Huey-Tubman K E, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell, 2020, 182(4): 828-842.e16.
doi: 10.1016/j.cell.2020.06.025
[34]   Pallesen J, Wang N S, Corbett K S, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): E7348-E7357.
[35]   Chattopadhyay S, Chen J Y, Chen H W, et al. Nanoparticle vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 2017, 1(3): 244-260.
doi: 10.7150/ntno.19796 pmid: 29071191
[36]   Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine, 2014, 32(3): 327-337.
doi: 10.1016/j.vaccine.2013.11.069
[37]   Ryzhikov A B, Ryzhikov E А, Bogryantseva M P, et al. Immunogenicity and protectivity of the peptide candidate vaccine against SARS-CoV-2. Annals of the Russian Academy of Medical Sciences, 2021, 76(1): 5-19.
doi: 10.15690/vramn1528
[38]   Casalino L, Gaieb Z, Goldsmith J A, et al. Beyond shielding: the roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 2020, 6(10): 1722-1734.
doi: 10.1021/acscentsci.0c01056 pmid: 33140034
[39]   Walls A C, Tortorici M A, Frenz B, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nature Structural & Molecular Biology, 2016, 23 (10): 899-905.
doi: 10.1038/nsmb.3293
[40]   Walls A C, Xiong X L, Park Y J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell, 2019, 176(5): 1026-1039.e15.
doi: 10.1016/j.cell.2018.12.028
[41]   Çelik E, Çalı P. Production of recombinant proteins by yeast cells. Biotechnology Advances, 2012, 30(5): 1108-1118.
doi: 10.1016/j.biotechadv.2011.09.011
[42]   Shanmugaraj B, Bulaon C J I, Phoolcharoen W. Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (Basel, Switzerland), 2020, 9(7): 842.
[43]   郝宇娉, 陆琳, 杨志红. 转基因植物疫苗的研究进展. 核农学报, 2020, 34(12): 2708-2724.
[43]   Hao Y P, Lu L, Yang Z H. Progress on transgenic plants vaccines. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2708-2724.
[44]   Luo M, Shao B, Yu J Y, et al. Simultaneous enhancement of cellular and humoral immunity by the high salt formulation of Al(OH)3 adjuvant. Cell Research, 2017, 27 (4): 586-589.
doi: 10.1038/cr.2017.14
[45]   张林焱, 周旭. 疫苗用氢氧化铝佐剂的研究现状. 中国生物制品学杂志, 2020, 33(2): 213-215, 221.
[45]   Zhang L Y, Zhou X. Research status of aluminum hydroxide adjuvant for vaccine. Chinese Journal of Biologicals, 2020, 33(2): 213-215, 221.
[46]   Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Review of Vaccines, 2011, 10(4): 499-511.
doi: 10.1586/erv.10.174
[47]   Gordon D L, Sajkov D, Honda-Okubo Y, et al. Human phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax? delta inulin adjuvant. Vaccine, 2016, 34(33): 3780-3786.
doi: 10.1016/j.vaccine.2016.05.071 pmid: 27342914
[48]   Gordon D, Kelley P, Heinzel S, et al. Immunogenicity and safety of AdvaxTM, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled phase 1 study. Vaccine, 2014, 32(48): 6469-6477.
doi: 10.1016/j.vaccine.2014.09.034 pmid: 25267153
[49]   Garçon N, Vaughn D W, Didierlaurent A M. Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Review of Vaccines, 2012, 11(3): 349-366.
doi: 10.1586/erv.11.192
[50]   Cohet C, van der Most R, Bauchau V, et al. Safety of AS03-adjuvanted influenza vaccines: a review of the evidence. Vaccine, 2019, 37(23): 3006-3021.
doi: 10.1016/j.vaccine.2019.04.048
[51]   Black S, Della Cioppa G, Malfroot A, et al. Safety of MF59-adjuvanted versus non-adjuvanted influenza vaccines in children and adolescents: an integrated analysis. Vaccine, 2010, 28(45): 7331-7336.
doi: 10.1016/j.vaccine.2010.08.075
[52]   Bengtsson K L, Song H F, Stertman L, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola∕Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine, 2016, 34(16): 1927-1935.
doi: 10.1016/j.vaccine.2016.02.033 pmid: 26921779
[53]   Dai L P, Zheng T Y, Xu K, et al. A universal design of Betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell, 2020, 182(3): 722-733.e11.
doi: 10.1016/j.cell.2020.06.035
[54]   AlKaabi N, Yang Y K, Zhang J, et al. Safety and immunogenicity of a heterologous boost with a recombinant vaccine, NVSI-06-07, in the inactivated vaccine recipients from UAE: a phase 2 randomised, double-blinded, controlled clinical trial. medRxiv, 2022. DOI: 10.1101∕2021.12.29.21268499.
doi: 10.1101∕2021.12.29.21268499
[55]   Liang Y, Zhang J, Yuan R Y, et al. Design of a mutation-integrated trimeric RBD with broad protection against SARS-CoV-2. Cell Discovery, 2022, 8: 17.
doi: 10.1038/s41421-022-00383-5 pmid: 35169113
[56]   Sun S, Cai Y, Song T Z, et al. Interferon-armed RBD dimer enhances the immunogenicity of RBD for sterilizing immunity against SARS-CoV-2. Cell Research, 2021, 31 (9): 1011-1023.
doi: 10.1038/s41422-021-00531-8
[57]   Toledo-Romani M E, Garcia-Carmenate M, Silva C V, et al. Efficacy and safety of Soberana 02, a COVID-19 conjugate vaccine in heterologous three-dose combination. medRxiv, 2021. DOI: 10.1101∕2021.10.31.21265703.
doi: 10.1101∕2021.10.31.21265703
[58]   Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn A M, et al. The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen. medRxiv, 2021. DOI: 10.1101∕2021.06.29.21259605.
doi: 10.1101∕2021.06.29.21259605
[59]   Walls A C, Fiala B, Schäfer A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 2020, 183(5): 1367-1382.e17.
doi: 10.1016/j.cell.2020.10.043
[60]   Pérez-Rodríguez S, de la Caridad Rodríguez-González M, Ochoa-Azze R, et al. A randomized, double-blind phase I clinical trial of two recombinant dimeric RBD COVID-19 vaccine candidates: safety, reactogenicity and immunogenicity. Vaccine, 2022, 40(13): 2068-2075.
doi: 10.1016/j.vaccine.2022.02.029 pmid: 35164986
[61]   Bravo L, Smolenov I, Han H H, et al. Efficacy of the adjuvanted subunit protein COVID-19 vaccine, SCB-2019: a phase 2 and 3 multicentre, double-blind, randomised, placebo-controlled trial. The Lancet, 2022, 399(10323): 461-472.
doi: 10.1016/S0140-6736(22)00055-1
[62]   Lien C E, Kuo T Y, Lin Y J, et al. Evaluating the neutralizing ability of a CpG-adjuvanted S-2P subunit vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America, 2021, 2021Nov5: ciab711.
[63]   Nanishi E, Borriello F, O’Meara T R, et al. An aluminum hydroxide: CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14(629): eabj5305.
doi: 10.1126/scitranslmed.abj5305
[64]   Liu H T, Zhou C L, An J, et al. Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum∕CpG adjuvants. Vaccine, 2021, 39(48): 7001-7011.
doi: 10.1016/j.vaccine.2021.10.066
[65]   Tian J H, Patel N, Haupt R, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV 2373 immunogenicity in baboons and protection in mice. Nature Communications, 2021, 12: 372.
doi: 10.1038/s41467-020-20653-8
[66]   Sridhar S, Joaquin A, Bonaparte M I, et al. Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV 2 preS dTM) in healthy adults: interim findings from a phase 2, randomised, dose-finding, multicentre study. The Lancet Infectious Diseases, 2022, S1473- (21)00764-7.
[67]   Watterson D, Wijesundara D K, Modhiran N, et al. Preclinical development of a molecular clamp-stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2. Clinical & Translational Immunology, 2021, 10(4): e1269.
[68]   Li L, Honda-Okubo Y, Huang Y, et al. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine, 2021, 39(40): 5940-5953.
doi: 10.1016/j.vaccine.2021.07.087
[69]   Hsieh S M, Liu M C, Chen Y H, et al. Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. The Lancet Respiratory Medicine, 2021, 9(12): 1396-1406.
doi: 10.1016/S2213-2600(21)00402-1
[70]   Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. The New England Journal of Medicine, 2020, 383(24): 2320-2332.
doi: 10.1056/NEJMoa2026920
[71]   Novavax. The registered clinical trials of Nuvaxovid. [2022-04-18]. https://covid19.trackvaccines.org/vaccines/25/.
[72]   Serum Institute of India. The registered clinical trials of COVOVAX (Novavax formulation). [2022-04-18]. https://covid19.trackvaccines.org/vaccines/123/.
[73]   Thuluva S, Paradkar V, Turaga K, et al. Selection of optimum formulation of RBD-based protein sub-unit COVID-19 vaccine (Corbevax) based on safety and immunogenicity in an open-label, randomized phase-1 and 2 clinical studies. medRxiv, 2022. DOI: 10.1101/2022.03.08.22271822.
doi: 10.1101/2022.03.08.22271822
[74]   Zhao X, Zheng A Q, Li D D, et al. Neutralization of recombinant RBD-subunit vaccine ZF2001-elicited antisera to SARS-CoV-2 variants including Delta. bioRxiv, 2021. DOI: 10.1101/2021.07.15.452504.
doi: 10.1101/2021.07.15.452504
[75]   Kaabi N A, Yang Y K, Du L F, et al. Safety and immunogenicity of a hybrid-type vaccine booster in BBIBP-CorV recipients: a randomized controlled phase 2 trial. medRxiv, 2022. DOI: 10.1101/2022.03.08.22272062.
doi: 10.1101/2022.03.08.22272062
[76]   Valdes-Balbin Y, Santana-Mederos D, Quintero L, et al. SARS-CoV-2 RBD-tetanus toxoid conjugate vaccine induces a strong neutralizing immunity in preclinical studies. ACS Chemical Biology, 2021, 16(7): 1223-1233.
doi: 10.1021/acschembio.1c00272 pmid: 34219448
[77]   Liu H, Su D, Zhang J, et al. Improvement of pharmacokinetic profile of TRAIL via trimer-tag enhances its antitumor activity in vivo. Scientific Reports, 2017, 7: 8953.
doi: 10.1038/s41598-017-09518-1
[78]   Liang J G, Su D, Song T Z, et al. S-Trimer, a COVID-19 subunit vaccine candidate, induces protective immunity in nonhuman primates. Nature Communications, 2021, 12: 1346.
doi: 10.1038/s41467-021-21634-1
[79]   Chappell K J, Mordant F L, Li Z Y, et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet Infectious Diseases, 2021, 21(10): 1383-1394.
doi: 10.1016/S1473-3099(21)00200-0
[80]   Liu Y, Zhang N, Wang B, et al. Broad and long-lasting immune response against SARS-CoV-2 Omicron and other variants by PIKA-adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine (YS-SC2-010). bioRxiv, 2021. DOI: 10.1101/2021.12.22.473615.
doi: 10.1101/2021.12.22.473615
[81]   Tong J, Zhu C X, Lai H Y, et al. Potent neutralization antibodies induced by a recombinant trimeric spike protein vaccine candidate containing PIKA adjuvant for COVID-19. Vaccines, 2021, 9(3): 296.
doi: 10.3390/vaccines9030296
[82]   Heath P T, Galiza E P, Baxter D N, et al. Safety and efficacy of NVX-CoV 2373 COVID-19 vaccine. The New England Journal of Medicine, 2021, 385(13): 1172-1183.
doi: 10.1056/NEJMoa2107659 pmid: 34192426
[83]   Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV 2373 COVID-19 vaccine against the B.1.351 variant. The New England Journal of Medicine, 2021, 384(20): 1899-1909.
doi: 10.1056/NEJMoa2103055 pmid: 33951374
[84]   Dunkle L M, Kotloff K L, Gay C L, et al. Efficacy and safety of NVX-CoV 2373 in adults in the United States and Mexico. The New England Journal of Medicine, 2022, 386(6): 531-543.
doi: 10.1056/NEJMoa2116185
[85]   Powell A E, Zhang K M, Sanyal M, et al. A single immunization with spike-functionalized ferritin vaccines elicits neutralizing antibody responses against SARS-CoV-2 in mice. ACS Central Science, 2021, 7(1): 183-199.
doi: 10.1021/acscentsci.0c01405
[86]   Kanekiyo M, Wei C J, Yassine H M, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499 (7456): 102-106.
doi: 10.1038/nature12202
[87]   Yassine H M, Boyington J C, McTamney P M, et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nature Medicine, 2015, 21 (9): 1065-1070.
doi: 10.1038/nm.3927 pmid: 26301691
[88]   李志鹏, 刘庆友, 石德顺. 铁蛋白纳米颗粒应用于生物医疗领域的研究进展. 生物技术通报, 2015, 31(10): 38-47.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.010
[88]   Li Z P, Liu Q Y, Shi D S. Research progress on application of ferritin nanoparticles in the field of biomedicine. Biotechnology Bulletin, 2015, 31(10): 38-47.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.010
[89]   Joyce M G, Chen W H, Sankhala R S, et al. SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37(12): 110143.
doi: 10.1016/j.celrep.2021.110143
[90]   Joyce M G, King H A D, Naouar I E, et al. Efficacy of a broadly neutralizing SARS-CoV-2 ferritin nanoparticle vaccine in nonhuman Primates. bioRxiv, 2021. DOI: 10.1101/2021.03.24.436523.
doi: 10.1101/2021.03.24.436523
[91]   Carmen J M, Shrivastava S, Lu Z, et al. SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ Vaccines, 2021, 6(1): 151.
doi: 10.1038/s41541-021-00414-4
[92]   Vaxine. COVAX-19® vaccine project of Vaxine. [2022-04-18].https://vaxine.net/projects/.
[93]   University of Saskatchewan. A clinical trial of COVAC-2 in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05209009.
[94]   Hospital do Coracao. Evaluation of safety and immunogenicity of a novel vaccine for prevention of COVID-19 in adults previously immunized. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05016934.
[95]   Renn A, Fu Y, Hu X, et al. Fruitful neutralizing antibody pipeline brings hope to defeat SARS-CoV-2. Trends in Pharmacological Sciences, 2020, 41(11): 815-829.
doi: 10.1016/j.tips.2020.07.004
[96]   Pollet J, Chen W H, Versteeg L, et al. SARS-CoV-2 RBD219-N1C1: a yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Human Vaccines & Immunotherapeutics, 2021, 17(8): 2356-2366.
[97]   Center for Genetic Engineering and Biotechnology. Phase III clinical study of Abdala. [2022-04-18]. https://www.cigb.edu.cu/en/product/abdala-cigb-66-2/.
[98]   Meng F Y, Gao F, Jia S Y, et al. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal Transduction and Targeted Therapy, 2021, 6: 271.
doi: 10.1038/s41392-021-00692-3
[99]   Yang J, Wang W, Chen Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586 (7830): 572-577.
doi: 10.1038/s41586-020-2599-8
[100]   Huang B Y, Dai L P, Wang H, et al. eutralization of SARS-CoV-2 VOC 501Y.V2 by human antisera elicited by both inactivated BBIBP-CorV and recombinant dimeric RBD ZF2001 vaccines. bioRxiv, 2021. DOI: 10.1101/2021.02.01.429069.
doi: 10.1101/2021.02.01.429069
[101]   Guirakhoo F, Kuo L, Peng J, et al. A novel SARS-CoV-2 multitope protein/peptide vaccine candidate is highly immunogenic and prevents lung infection in an adeno associated virus human angiotensin-converting enzyme 2 (AAV hACE2) mouse model. bioRxiv, 2020. DOI: 10.1101/2020.11.30.399154.
doi: 10.1101/2020.11.30.399154
[102]   University Medical Center Groningen. Combinatorial phase I/II safety, tolerability and immunogenicity single center open-label clinical study of AKS-452 COVID-19 vaccination study. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04681092.
[103]   Baiya Phytopharm. A study to evaluate safety, tolerability, and reactogenicity of an RBD-Fc-based vaccine to prevent COVID-19. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04953078.
[104]   Yu J P, Yao W R, Hu Y S, et al. A trimeric NTD and RBD SARS-CoV-2 subunit vaccine induced protective immunity in CAG-hACE 2 transgenic mice and rhesus macaques. bioRxiv, 2021. DOI: 10.1101/2021.11.03.467182.
doi: 10.1101/2021.11.03.467182
[105]   Maharjan P M, Choe S. Plant-based COVID-19 vaccines: current status, design, and development strategies of candidate vaccines. Vaccines, 2021, 9(9): 992.
doi: 10.3390/vaccines9090992
[106]   Huang W C, Zhou S Q, He X D, et al. SARS-CoV-2 RBD neutralizing antibody induction is enhanced by particulate vaccination. Advanced Materials, 2020, 32(50): 2005637.
doi: 10.1002/adma.202005637
[107]   Zheng N Y, Xia R, Yang C P, et al. Boosted expression of the SARS-CoV nucleocapsid protein in tobacco and its immunogenicity in mice. Vaccine, 2009, 27(36): 5001-5007.
doi: 10.1016/j.vaccine.2009.05.073
[108]   Interfax. EpiVacCorona vaccine to be efficacious against Omicron variant. [2022-04-18]. https://interfax.com/newsroom/top-stories/73354/.
[109]   Heitmann J S, Bilich T, Tandler C, et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature, 2022, 601 (7894): 617-622.
doi: 10.1038/s41586-021-04232-5
[110]   Cao Y, Hao X, Wang X, et al. Humoral immunogenicity and reactogenicity of CoronaVac or ZF2001 booster after two doses of inactivated vaccine. Cell Research, 2022, 32 (1): 107-109.
doi: 10.1038/s41422-021-00596-5
[111]   Ai J, Zhang H, Zhang Q, et al. Recombinant protein subunit vaccine booster following two-dose inactivated vaccines dramatically enhanced anti-RBD responses and neutralizing titers against SARS-CoV-2 and variants of concern. Cell Research, 2022, 32 (1): 103-106.
doi: 10.1038/s41422-021-00590-x
[112]   Novavax. Evaluation of the safety and immunogenicity of SII Vaccine constructs based on the SARS-CoV-2 (COVID-19) variant in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05029856.
[113]   Sanofi. Sanofi and GSK announce positive preliminary booster data for their COVID-19 vaccine candidate and continuation of phase 3 trial per independent monitoring board recommendation. [2022-04-18]. https://www.sanofi.com/en/media-room/press-releases/2021/2021-12-15-07-30-00-2352255.
[114]   Clover Biopharmaceuticals. Immunogenicity and safety of adjuvanted SCB-2020S vaccines in adults. [2022-04-18]. https://www.clinicaltrials.gov/ct2/show/NCT04950751.
[115]   Barreiro A, Prenafeta A, Bech-Sabat G, et al. Preclinical efficacy, safety, and immunogenicity of PHH-1V, a second-generation COVID-19 vaccine candidate based on a novel recombinant RBD fusion heterodimer of SARS-CoV-2. bioRxiv, 2021. DOI: 10.1101/2021.11.22.469117.
doi: 10.1101/2021.11.22.469117
[116]   Saville J W, Mannar D, Zhu X, et al. Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nature Communications, 2022, 13(1): 742.
doi: 10.1038/s41467-022-28324-6 pmid: 35136050
[117]   National Taiwan University Hospital. A heterologous prime-boost study to evaluate immunogenicity and safety of mRNA-1273 with MVC-COV1901 in adults. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05079633.
[118]   Yisheng Biopharma. To evaluate the safety, tolerability, and immunogenicity of a PIKA-adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine in healthy individuals. [2022-04-18]. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=382358&isReview=true.
[119]   CinnaGen Company. A phase III, randomized, two-armed, double-blind, placebo controlled trial to evaluate efficacy and safety of an adjuvanted recombinant SARS-CoV-2 spike (S) protein subunit vaccine (Spikogen® produced by CinnaGen Co. [2022-04-18]. https://en.irct.ir/trial/57559.
[120]   Novavax. A study to evaluate the efficacy, immune response, and safety of a COVID-19 vaccine in adults ≥ 18 years with a pediatric expansion in adolescents (12 to ≥ 18 years) at risk for SARS-CoV-2. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04611802.
[121]   Center for Genetic Engineering and Biotechnology. Phase III, multicenter, randomized, double-blind, placebo-controlled clinical trial for the evaluation in adults of the efficacy, safety and immunogenicity of the vaccine candidate CIGB-66 against SARS-CoV-2. [2022-04-18]. https://rpcec.sld.cu/trials/RPCEC00000359-En.
[122]   Biological E Limited. A prospective, single-blind, randomized, active-controlled phase III clinical study to evaluate the immunogenicity and safety of Biological E’s Corbevax vaccine for protection against COVID-19 disease when administered to RT-PCR negative adult subjects. [2022-04-18]. http://www.ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=59772.
[123]   National Vaccine and Serum Institute, China. Clinical trial on sequential immunization of recombinant COVID-19 vaccine (CHO cells, NVSI-06-08) and inactivated COVID-19 vaccine (Vero cells) in population aged 18 years and above. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT05069129.
[124]   Finlay Vaccine Institute. Phase III clinical trial, multicenter, adaptive, parallel-group, randomized, placebo-controlled, double-blind study to evaluate the efficacy, safety and immunogenicity of vaccination against SARS-CoV-2 with 2 doses of FINLAY-FR-2 and a heterologous scheme with 2 doses of FINLAY-FR-2 and a booster dose with FINLAY-FR-1A (COVID-19). [2022-04-18]. http://rpcec.sld.cu/en/trials/RPCEC00000354-En.
[125]   Kentucky BioProcessing. KBP-201 COVID-19 vaccine trial in healthy volunteers. [2022-04-18]. https://clinicaltrials.gov/ct2/show/NCT04473690.
[1] QIAN Man-yun,WANG Ji-wei,LI Hao-ze,WANG Rui-hua,LIU Yun,LI Ya-feng. Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine[J]. China Biotechnology, 2022, 42(5): 106-116.
[2] WU Dong,XIAO Feng,YUAN Min,CHEN Yu-bao,ZHANG Hong-xiang. Transformation of Scientific and Technological Achievements in Biomedical Field in China from 2011 to 2020[J]. China Biotechnology, 2022, 42(1/2): 191-201.
[3] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[4] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[5] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[6] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[7] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[8] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[9] FU Gui-e,LI Jin,GENG Pei-ran,SHEN Meng-qiu,ZHANG Jin-qian-nan,ZHAO Xi-chen. A Study on COVID-19 Prevention Force of Typical Cities in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Medical Perspective[J]. China Biotechnology, 2021, 41(12): 125-140.
[10] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[11] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[12] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[13] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[14] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[15] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.