Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 119-127    DOI: 10.13523/j.cb.2108059
Orginal Article     
A Review on Bio-preservation at Sub-freezing Temperatures under Isochoric Conditions
ZHAO Yuan-heng1,2,GUO Jia1,CHEN Liu-biao1,**(),WANG Jun-jie1,2
1 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(5018KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Low temperature can slow down biochemical reaction and extend the life of biological materials. In order to avoid the cryoinjury caused by the ice crystal during traditional isobaric (atmospheric pressure) freezing process, Dr. Rubinsky developed two new biopreservation technologies at isochoric (constant volume) conditions. One technology is isochoric freezing, during which part of liquid is frozen and the formed ice expands to generate hydrostatic pressure inside the rigid isochoric chamber and biomatters can be stored at subfreezing temperatures in supercooled phase without any internal ice formation damage. The other technology is isochoric supercooling, which can also preserve organisms in supercooling state with a higher stability in a rigid isochoric chamber, resulting in no damage from ice crystals. In this paper, the principle, application and research progress of isochoric freezing and isochoric supercooling are reviewed, and the possible future research direction of cryopreservation under isochoric conditions is prospected.



Key wordsCryopreservation      Supercooling      Isochoric freezing      Isochoric supercooling      Ice physics     
Received: 26 August 2021      Published: 03 March 2022
ZTFLH:  Q-1  
  Q6  
  Q81  
Corresponding Authors: Liu-biao CHEN     E-mail: chenliubiao@mail.ipc.ac.cn
Cite this article:

ZHAO Yuan-heng,GUO Jia,CHEN Liu-biao,WANG Jun-jie. A Review on Bio-preservation at Sub-freezing Temperatures under Isochoric Conditions. China Biotechnology, 2022, 42(1/2): 119-127.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2108059     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/119

Fig.1 Comparison of isobaric freezing, hyperbaric freezing and isochoric freezing (a)Isobaric freezing (b)Hyperbaric freezing (c)Isochoric freezing (d)Supercooling (e)Cooling path for isobaric, isochoric and hyperbaric freezing on the water phase diagram (f)Diagram of cells after isochoric freezing / supercooling (g)Diagram of cells after isobaric freezing (h)Diagram of cells after isobaric / hyperbaric freezing[20]
Fig. 2 Isochoric freezing chamber
Fig. 3 Typical freezing process in isochoric chamber
Fig. 4 Isochoric cryopreservation of fish tissues (a)Isochoric apparatus (b)Microstructure of fish tissue after cryopreservation for 3 hours
Fig. 5 Adding protective solution in constant volume freezing system (a) Protective solutions for human organ[39] (b)Protective solutions for potato tissue[40]
生物材料 温度/℃ 保存效果 参考文献
小鼠肺 -2 结构损坏较小,大多数指标和新鲜肺几乎一致 Okamoto等[45]
小鼠肾脏 -2 组织结构破坏小 Sultana等[46]
人体肝脏 -4 有效延长肝脏活性至27 h de Vries等[47]
红细胞 -20 有效保存100天 Huang等[10]
Table 1 Results of several biological samples after supercooling preservation
Fig.6 The stability of supercooled state of liquid by external disturbances (a) Isobaric conditions (b) Isochoric conditions
[1]   Zhan L, Li M G, Hays T, et al. Cryopreservation method for Drosophila melanogaster embryos. Nature Communications, 2021, 12:2412.
doi: 10.1038/s41467-021-22694-z pmid: 33893303
[2]   沈华萍, 丁春梅, 迟占有, 等. 不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响. 生物工程学报, 2003, 19(4):489-492.
[2]   Shen H P, Ding C M, Chi Z Y, et al. Effects of different cooling rates on cryopreservation of hematopoietic stem cells from cord blood. Chinese Journal of Biotechnology, 2003, 19(4):489-492.
[3]   赵远恒. 定容与定压条件下食品低温保存研究. 北京:中国科学院大学, 2021.
[3]   Zhao Y H. Food cryopreservation under isochoric and isobaric conditions. Beijing: University of Chinese Academy of Sciences, 2021.
[4]   龚俊. 细胞冷冻保存研究进展. 中阿科技论坛(中英文), 2021(1):116-120.
[4]   Gong J. A review of research progress of domestic cell cryopreservation. China-Arab States Science and Technology Forum, 2021(1):116-120.
[5]   陈晓丽, 朱化彬, 郝海生, 等. 猪精子冷冻损伤研究进展. 中国生物工程杂志, 2010, 30(7):86-91.
[5]   Chen X L, Zhu H B, Hao H S, et al. Progress on the cryodamage of frozen-thawed boar spermatozoa. China Biotechnology, 2010, 30(7):86-91.
[6]   Zhao Y H, Powell-Palm M J, Wang J J, et al. Analysis of global energy savings in the frozen food industry made possible by transitioning from conventional isobaric freezing to isochoric freezing. Renewable and Sustainable Energy Reviews, 2021, 151:111621.
doi: 10.1016/j.rser.2021.111621
[7]   Zhao Y H, Ji W, Chen L B, et al. Effect of cryogenic freezing combined with precooling on freezing rates and the quality of golden pomfret (Trachinotus ovatus). Journal of Food Process Engineering, 2019, 42(8):e13296. DOI: 10.1111/jfpe.13296.
doi: 10.1111/jfpe.13296
[8]   LeBail A, Chevalier D, Mussa D M, et al. High pressure freezing and thawing of foods: a review. International Journal of Refrigeration, 2002, 25(5):504-513.
doi: 10.1016/S0140-7007(01)00030-5
[9]   Rubinsky B, Perez P A, Carlson M E. The thermodynamic principles of isochoric cryopreservation. Cryobiology, 2005, 50(2):121-138.
pmid: 15843002
[10]   Huang H S, Yarmush M L, Usta O B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nature Communications, 2018, 9:3201.
doi: 10.1038/s41467-018-05636-0
[11]   Sharma A, Bischof J C, Finger E B. Liver cryopreservation for regenerative medicine applications. Regenerative Engineering and Translational Medicine, 2021, 7(1):57-65.
doi: 10.1007/s40883-019-00131-4
[12]   Perez P A. Thermodynamic and heat transfer analysis for isochoric cryopreservation. Doctor Dissertation, Berkeley: University of California at Berkeley, 2006.
[13]   Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Advanced Science (Weinheim, Baden Wurttemberg, Germany), 2021, 8(6):2002425.
[14]   Moor H. Theory and practice of high pressure freezing. Cryotechniques in Biological Electron Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987: 175-191.
[15]   Hite B H. The effect of pressure in the preservation of milk: a preliminary report. West Virginia University Agricultural Experiment Station, 1899(54):15-35.
[16]   de Cheftel J C, Culioli J. Effects of high pressure on meat: a review. Meat Science, 1997, 46(3):211-236.
pmid: 22062123
[17]   Alizadeh E, Chapleau N, de Lamballerie M, et al. Effects of freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. Journal of Food Science, 2007, 72(5):E279-E284. DOI: 10.1111/j.1750-3841.2007.00355.x.
doi: 10.1111/j.1750-3841.2007.00355.x
[18]   Tironi V, LeBail A, de Lamballerie M. Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. Journal of Food Science, 2007, 72(7):C381-C387.
doi: 10.1111/jfds.2007.72.issue-7
[19]   Su G M, Ramaswamy H S, Zhu S M, et al. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innovative Food Science & Emerging Technologies, 2014, 26:40-50.
[20]   Zhu Z W, Li T, Sun D W. Pressure-related cooling and freezing techniques for the food industry: fundamentals and applications. Critical Reviews in Food Science and Nutrition, 2021, 61(17):2793-2808.
doi: 10.1080/10408398.2020.1841729
[21]   Nida S, Moses J A, Anandharamakrishnan C. Isochoric freezing and its emerging applications in food preservation. Food Engineering Reviews, 2021, 13(4):812-821.
doi: 10.1007/s12393-021-09284-x
[22]   Stonehouse G G, Evans J A. The use of supercooling for fresh foods: a review. Journal of Food Engineering, 2015, 148:74-79.
doi: 10.1016/j.jfoodeng.2014.08.007
[23]   Kang T, You Y, Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Science and Biotechnology, 2020, 29(3):303-321.
doi: 10.1007/s10068-020-00750-6
[24]   Kiani H, Sun D W. Water crystallization and its importance to freezing of foods: a review. Trends in Food Science & Technology, 2011, 22(8):407-426.
[25]   Ishiguro H, Rubinsky B. Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology, 1994, 31(5):483-500.
pmid: 7988158
[26]   Zhao Y H, Powell-Palm M J, Ukpai G, et al. Phase change interface stability during isochoric solidification of an aqueous solution. Applied Physics Letters, 2020, 117(13):133701.
doi: 10.1063/5.0019878
[27]   Powell-Palm M J, Rubinsky B, Sun W H. Freezing water at constant volume and under confinement. Communications Physics, 2020, 3:39.
doi: 10.1038/s42005-020-0303-9
[28]   Wan L L, Powell-Palm M J, Lee C, et al. Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8℃ and 78 MPa. Biochemical and Biophysical Research Communications, 2018, 496(3):852-857.
doi: 10.1016/j.bbrc.2018.01.140
[29]   Nãstase G, Lyu C N, Ukpai G, et al. Isochoric and isobaric freezing of fish muscle. Biochemical and Biophysical Research Communications, 2017, 485(2):279-283.
doi: 10.1016/j.bbrc.2017.02.091
[30]   Powell-Palm M J, Zhang Y F, Aruda J, et al. Isochoric conditions enable high subfreezing temperature pancreatic islet preservation without osmotic cryoprotective agents. Cryobiology, 2019, 86:130-133.
doi: S0011-2240(18)30597-2 pmid: 30629949
[31]   Mikus H, Miller A, Nastase G, et al. The nematode Caenorhabditis elegans survives subfreezing temperatures in an isochoric system. Biochemical and Biophysical Research Communications, 2016, 477(3):401-405.
doi: 10.1016/j.bbrc.2016.06.089
[32]   Bilbao-Sainz C, Sinrod A J G, Dao L, et al. Preservation of grape tomato by isochoric freezing. Food Research International, 2021, 143:110228.
doi: 10.1016/j.foodres.2021.110228 pmid: 33992342
[33]   Bilbao-Sainz C, Sinrod A G J, Dao L, et al. Preservation of spinach by isochoric (constant volume) freezing. International Journal of Food Science & Technology, 2020, 55(5):2141-2151.
[34]   Bilbao-Sainz C, Sinrod A, Powell-Palm M J, et al. Preservation of sweet cherry by isochoric (constant volume) freezing. Innovative Food Science & Emerging Technologies, 2019, 52:108-115.
[35]   Bilbao-Sainz C, Sinrod A J G, Williams T, et al. Preservation of tilapia (Oreochromis aureus) fillet by isochoric (constant volume) freezing. Journal of Aquatic Food Product Technology, 2020, 29(7):629-640.
doi: 10.1080/10498850.2020.1785602
[36]   Masson P, Tonello C, Balny C. High-pressure biotechnology in medicine and pharmaceutical science. Journal of Biomedicine & Biotechnology, 2001, 1(2):85-88.
[37]   Sebert P. Fish at high pressure: a hundred year history. Comparative Biochemistry and Physiology Part A, 2002, 131(3):575-585.
doi: 10.1016/S1095-6433(01)00509-8
[38]   Preciado J, Rubinsky B. The effect of isochoric freezing on mammalian cells in an extracellular phosphate buffered solution. Cryobiology, 2018, 82:155-158.
doi: S0011-2240(17)30391-7 pmid: 29684325
[39]   Rubinsky B. Mass transfer into biological matter using isochoric freezing. Cryobiology, 2021, 100:212-215.
doi: 10.1016/j.cryobiol.2021.03.004 pmid: 33757760
[40]   Zhao Y H, Bilbao-Sainz C, Wood D, et al. Effects of isochoric freezing conditions on cut potato quality. Foods, 2021, 10(5):974.
doi: 10.3390/foods10050974
[41]   Bilbao-Sainz C, Zhao Y H, Takeoka G, et al. Effect of isochoric freezing on quality aspects of minimally processed potatoes. Journal of Food Science, 2020, 85(9):2656-2664.
doi: 10.1111/1750-3841.15377 pmid: 32860220
[42]   Perez P A, Preciado J, Carlson G, et al. The effect of undissolved air on isochoric freezing. Cryobiology, 2016, 72(3):225-231.
doi: 10.1016/j.cryobiol.2016.04.002
[43]   James C, Seignemartin V, James S J. The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration, 2009, 32(2):253-260.
doi: 10.1016/j.ijrefrig.2008.05.012
[44]   Fukuma Y, Yamane A, Itoh T, et al. Application of supercooling to long-term storage of fish meat. Fisheries Science, 2012, 78(2):451-461.
doi: 10.1007/s12562-011-0460-6
[45]   Okamoto T, Nakamura T, Zhang J T, et al. Successful sub-zero non-freezing preservation of rat lungs at -2 degrees C utilizing a new supercooling technology. The Journal of Heart and Lung Transplantation, 2008, 27(10):1150-1157.
doi: 10.1016/j.healun.2008.07.008
[46]   Sultana T, Lee J I, Park J H, et al. Supercooling storage for the transplantable sources from the rat and the rabbit: a preliminary report. Transplantation Proceedings, 2018, 50(4):1178-1182.
[47]   de Vries R J, Tessier S N, Banik P D, et al. Supercooling extends preservation time of human livers. Nature Biotechnology, 2019, 37(10):1131-1136.
doi: 10.1038/s41587-019-0223-y
[48]   Powell-Palm M J, Koh-Bell A, Rubinsky B. Isochoric conditions enhance stability of metastable supercooled water. Applied Physics Letters, 2020, 116(12):123702.
doi: 10.1063/1.5145334
[49]   Powell-Palm M J, Charwat V, Charrez B, et al. Isochoric supercooled preservation and revival of human cardiac microtissues. Communications Biology, 2021, 4:1118.
doi: 10.1038/s42003-021-02650-9 pmid: 34552201
[1] Long CHEN hua-bin ZHU Zong-li WANG . Progress on the study of the influence factors of cryopreservation of boar semen[J]. China Biotechnology, 2008, 28(6): 113-117.