Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 112-118    DOI: 10.13523/j.cb.2106050
Orginal Article     
Application Progress of Organoids-on-a-chip in Medical Research
FENG Xiao-ying1,2,MENG Qian1,2,CHEN Wei1,YU Lei3,**(),HUANG Wei-ren1,**()
1 State and Local Government Joint Engineering Laboratory of Synthetic Biology Medicine and Clinical Application of Key Technologies, Shenzhen Second Hospital, Shenzhen 518036, China
2 Shantou University Medical College, Shantou 515041, China
3 Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Download: HTML   PDF(1053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Compared with 2D cell model and animal model, organoids can better reproduce the key structural and functional characteristics of the source organs, which have been widely studied and applied in the biomedical field. Organoids-on-a-chip combines organoid culture chamber, microfluidics and other functional units, which can not only be designed according to researchers' cognition of target organs, but also simulate the complexity of target organs. With the characteristics of high throughput and high sensitivity, it can control and detect the changes of the microenvironment in which organoids are located. This review summarizes the units and applications of organoids-on-a-chip in medical research, including construction of biological models and disease models, drug research and development, and immune evaluation, and discusses the shortcomings of organoids-on-a-chip in current research and application and proposes directions for future research. The aim is to provide a powerful strategy for the study of disease or biological development mechanism and preclinical research.



Key wordsOrganoids-on-a-chip      Microfluidics      Drug screening      Construction of models      Evaluation of immune effect     
Received: 29 June 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Lei YU,Wei-ren HUANG     E-mail: lei.yu@siat.ac.cn;pony8980@163.com
Cite this article:

FENG Xiao-ying,MENG Qian,CHEN Wei,YU Lei,HUANG Wei-ren. Application Progress of Organoids-on-a-chip in Medical Research. China Biotechnology, 2022, 42(1/2): 112-118.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106050     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/112

[1]   Lancaster M A, Knoblich J A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194):1247125.
doi: 10.1126/science.1247125 pmid: 25035496
[2]   Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2):515-528.e17.
doi: 10.1016/j.cell.2018.03.017
[3]   Lo Y H, Karlsson K, Kuo C J. Applications of organoids for cancer biology and precision medicine. Nature Cancer, 2020, 1(8):761-773.
doi: 10.1038/s43018-020-0102-y
[4]   Drost J, Karthaus W R, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 2016, 11(2):347-358.
doi: 10.1038/nprot.2016.006
[5]   Cattaneo C M, Dijkstra K K, Fanchi L F, et al. Tumor organoid-T-cell coculture systems. Nature Protocols, 2020, 15(1):15-39.
doi: 10.1038/s41596-019-0232-9 pmid: 31853056
[6]   Low L A, Tagle D A. Tissue chips to aid drug development and modeling for rare diseases. Expert Opinion on Orphan Drugs, 2016, 4(11):1113-1121.
doi: 10.1080/21678707.2016.1244479
[7]   Park S E, Georgescu A, Huh D. Organoids-on-a-chip. Science, 2019, 364(6444):960-965.
doi: 10.1126/science.aaw7894
[8]   Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 2013, 18(5-6):240-249.
doi: 10.1016/j.drudis.2012.10.003 pmid: 23073387
[9]   Xu X, Farach-Carson M C, Jia X Q. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 2014, 32(7):1256-1268.
doi: 10.1016/j.biotechadv.2014.07.009
[10]   Liu H T, Wang Y Q, Cui K L, et al. Advances in hydrogels in organoids and organs-on-a-chip. Advanced Materials (Deerfield Beach, Fla), 2019, 31(50):e1902042.
[11]   Kankala R K, Zhu K, Li J, et al. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication, 2017, 9(3):032002.
doi: 10.1088/1758-5090/aa8113
[12]   Khan I, Prabhakar A, Delepine C, et al. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics, 2021, 15(2):024105.
doi: 10.1063/5.0041027
[13]   Huh D, Hamilton G A, Ingber D E. From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12):745-754.
doi: 10.1016/j.tcb.2011.09.005
[14]   Lin B C, Qin J H. Laboratory on a microfluidic chip. Se Pu, 2005, 23(5):456-463.
[15]   Yin X L, Mead B E, Safaee H, et al. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1):25-38.
doi: 10.1016/j.stem.2015.12.005
[16]   Wang Y L, Gunasekara D B, Reed M I, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials, 2017, 128:44-55.
doi: 10.1016/j.biomaterials.2017.03.005
[17]   Zervantonakis I, Chung S, Sudo R, et al. Concentration gradients in microfluidic 3D matrix cell culture systems. International Journal of Micro- Nano Scale Transport, 2010, 1(1):27-36.
doi: 10.1260/1759-3093.1.1.27
[18]   Lee K K, McCauley H A, Broda T R, et al. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab on a Chip, 2018, 18(20):3079-3085.
doi: 10.1039/C8LC00910D
[19]   Michielin F, Giobbe G G, Luni C, et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs. Cell Reports, 2020, 33(9):108453.
doi: 10.1016/j.celrep.2020.108453 pmid: 33264615
[20]   Gheibi P, Zeng S X, Son K J, et al. Microchamber cultures of bladder cancer: a platform for characterizing drug responsiveness and resistance in PDX and primary cancer cells. Scientific Reports, 2017, 7:12277.
doi: 10.1038/s41598-017-12543-9
[21]   Hassell B A, Goyal G, Lee E, et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Reports, 2017, 21(2):508-516.
doi: S2211-1247(17)31331-1 pmid: 29020635
[22]   Schuster B, Junkin M, Kashaf S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nature Communications, 2020, 11:5271.
doi: 10.1038/s41467-020-19058-4 pmid: 33077832
[23]   Lohasz C, Frey O, Bonanini F, et al. Tubing-free microfluidic microtissue culture system featuring gradual, in vivo-like substance exposure profiles. Frontiers in Bioengineering and Biotechnology, 2019, 7:72.
doi: 10.3389/fbioe.2019.00072
[24]   Sung K E, Su X J, Berthier E, et al. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One, 2013, 8(10):e76373.
doi: 10.1371/journal.pone.0076373
[25]   Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomaterialia, 2020, 116:67-83.
doi: 10.1016/j.actbio.2020.08.041
[26]   Schutgens F, Rookmaaker M B, Margaritis T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nature Biotechnology, 2019, 37(3):303-313.
doi: 10.1038/s41587-019-0048-8 pmid: 30833775
[27]   Osaki T, Uzel S G M, Kamm R D. On-chip 3D neuromuscular model for drug screening and precision medicine in neuromuscular disease. Nature Protocols, 2020, 15(2):421-449.
doi: 10.1038/s41596-019-0248-1
[28]   Frega M, Tedesco M, Massobrio P, et al. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific Reports, 2014, 4:5489.
doi: 10.1038/srep05489
[29]   Wu Q, Pan Y X, Wan H, et al. Research progress of organoids-on-chips in biomedical application. Chinese Science Bulletin, 2019, 64(9):902-910.
[30]   Zhang Y S, Aleman J, Shin S R, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. PNAS, 2017, 114(12):E2293-E2302.
doi: 10.1073/pnas.1612906114
[31]   Takebe T, Wells J M. Organoids by design. Science, 2019, 364(6444):956-959.
doi: 10.1126/science.aaw7567
[32]   Yu F, Hunziker W, Choudhury D. Engineering microfluidic organoid-on-a-chip platforms. Micromachines, 2019, 10(3):165.
doi: 10.3390/mi10030165
[33]   Beckwitt C H, Clark A M, Wheeler S, et al. Liver ‘organ on a chip’. Experimental Cell Research, 2018, 363(1):15-25.
doi: S0014-4827(17)30678-X pmid: 29291400
[34]   Guo F, French J B, Li P, et al. Probing cell-cell communication with microfluidic devices. Lab on a Chip, 2013, 13(16):3152-3162.
doi: 10.1039/c3lc90067c
[35]   庄琪琛, 宁芮之, 麻远, 等. 微流控技术应用于细胞分析的研究进展. 分析化学, 2016, 44(4):522-532.
doi: 10.1016/S1872-2040(16)60919-2
[35]   Zhuang Q C, Ning R Z, Ma Y, et al. Recent development in microfluidic chips for in vitro cell-based research. Chinese Journal of Analytical Chemistry, 2016, 44(4):522-532.
doi: 10.1016/S1872-2040(16)60919-2
[36]   Toh Y C, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on a Chip, 2007, 7(3):302-309.
doi: 10.1039/b614872g
[37]   Jin Y, Kim J, Lee J S, et al. Drug screening: vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform (adv. funct. mater. 37/2018). Advanced Functional Materials, 2018, 28(37):1870266.
doi: 10.1002/adfm.v28.37
[38]   Wang Y Q, Wang L, Zhu Y J, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab on a Chip, 2018, 18(6):851-860.
doi: 10.1039/C7LC01084B
[39]   Gao Y D, Majumdar D, Jovanovic B, et al. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomedical Microdevices, 2011, 13(3):539-548.
doi: 10.1007/s10544-011-9523-9
[40]   Jalili-Firoozinezhad S, Gazzaniga F S, Calamari E L, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 2019, 3(7):520-531.
doi: 10.1038/s41551-019-0397-0 pmid: 31086325
[41]   Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020, 585(7826):574-578.
doi: 10.1038/s41586-020-2724-8
[42]   Ramadan Q, Alberti M, Dufva M, et al. Editorial: medical and industrial applications of microfluidic-based cell/tissue culture and organs-on-a-chip. Frontiers in Bioengineering and Biotechnology, 2019, 7:151.
doi: 10.3389/fbioe.2019.00151 pmid: 31294020
[43]   Skardal A, Murphy S V, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7:8837.
doi: 10.1038/s41598-017-08879-x
[44]   Skardal A, Aleman J, Forsythe S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication, 2020, 12(2):025017.
doi: 10.1088/1758-5090/ab6d36
[45]   Kashaninejad N, Nikmaneshi M, Moghadas H, et al. Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines, 2016, 7(8):130.
doi: 10.3390/mi7080130
[46]   Zhang Z, Nagrath S. Microfluidics and cancer: are we there yet? Biomedical Microdevices, 2013, 15(4):595-609.
doi: 10.1007/s10544-012-9734-8 pmid: 23358873
[47]   Hu Y W, Sui X Z, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nature Communications, 2021, 12:2581.
doi: 10.1038/s41467-021-22676-1
[48]   Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on a Chip, 2014, 14(17):3290-3299.
doi: 10.1039/C4LC00531G
[49]   Zink D, Chuah J K C, Ying J Y. Assessing toxicity with human cell-based in vitro methods. Trends in Molecular Medicine, 2020, 26(6):570-582.
doi: 10.1016/j.molmed.2020.01.008
[50]   Aboulkheyr Es H, Montazeri L, Aref A R, et al. Personalized cancer medicine: an organoid approach. Trends in Biotechnology, 2018, 36(4):358-371.
doi: S0167-7799(17)30326-8 pmid: 29366522
[51]   Chen Q, Zhang X H F, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 2011, 20(4):538-549.
doi: 10.1016/j.ccr.2011.08.025
[52]   Aung A, Kumar V, Theprungsirikul J, et al. An engineered tumor-on-a-chip device with breast cancer-immune cell interactions for assessing T-cell recruitment. Cancer Research, 2020, 80(2):263-275.
doi: 10.1158/0008-5472.CAN-19-0342
[53]   Huang C P, Lu J, Seon H, et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab on a Chip, 2009, 9(12):1740-1748.
doi: 10.1039/b818401a
[54]   Liu P F, Cao Y W, Zhang S D, et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget, 2015, 6(35):37695-37705.
doi: 10.18632/oncotarget.v6i35
[55]   Gijzen L, Marescotti D, Raineri E, et al. An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technology, 2020, 25(6):585-597.
doi: 10.1177/2472630320924999
[56]   Feder-Mengus C, Ghosh S, Reschner A, et al. New dimensions in tumor immunology: what does 3D culture reveal? Trends in Molecular Medicine, 2008, 14(8):333-340.
doi: 10.1016/j.molmed.2008.06.001 pmid: 18614399
[57]   Boussommier-Calleja A, Li R, Chen M B, et al. Microfluidics: a new tool for modeling cancer-immune interactions. Trends in Cancer, 2016, 2(1):6-19.
pmid: 26858990
[58]   Berthier E, Young E W K, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on a Chip, 2012, 12(7):1224.
doi: 10.1039/c2lc20982a pmid: 22318426
[59]   Ren K N, Zhao Y H, Su J, et al. Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Analytical Chemistry, 2010, 82(14):5965-5971.
doi: 10.1021/ac100830t
[60]   Liu Q, Zhao T, Wang X N, et al. In situ vitrification of lung cancer organoids on a microwell array. Micromachines, 2021, 12(6):624.
doi: 10.3390/mi12060624
[1] JIN Lu,ZHOU Hang,CAO Yun,WANG Zhou-shou,CAO Rong-yue. Research on Applications of High-Throughput Perfusion Models in Bioprocessing Development[J]. China Biotechnology, 2020, 40(8): 63-73.
[2] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[3] ZHU Yun-peng, WANG Peng, XIA Bo-ran, TANG Yan-ting, WANG Quan. Screening and Inhibition Kinetics of SARS Coronavirus Main Protease Inhibitors[J]. China Biotechnology, 2016, 36(4): 35-42.
[4] SHI Wen-fang, FENG Yue, WEI Da-qiao, XIA Xue-shan. Hepatitis C Virus Targeting Drug and Drug Screening System[J]. China Biotechnology, 2011, 31(11): 95-101.
[5] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[6] . Establish an ELISA Method for Screening Agonists of the Rattus Norvegicus LXRβ[J]. China Biotechnology, 2010, 30(07): 0-0.
[7] XIE Gui-Huang, DIAO Qing-Lan, CHEN Chao-Yin. Application of Pseudovirus Systems on Anti-HIV-1 Drugs Screening and Drug-resistance Analyzing of HIV-1-Variants[J]. China Biotechnology, 2010, 30(03): 95-99.
[8] SHI Ji-Jing, LIU Chao-Ai, JU Kun, YANG Jie-Wei, GAO Meng-Xing, YANG Fan. Establishment of hIL-6 Protein Binding to sIL-6R Model for Screening IL-6 Inhibitors[J]. China Biotechnology, 2009, 29(11): 60-65.
[9] qiu shenghong. The Application of Zebrafish in the Study of the Tumor Antiangiogenesis[J]. China Biotechnology, 2009, 29(10): 98-101.
[10] . Study on A GFP Expression System for Detecting Estrogenic Compounds[J]. China Biotechnology, 2006, 26(10): 24-29.
[11] . Gene Coloning, Expression and Activity Assay of Survivin[J]. China Biotechnology, 2006, 26(05): 54-57.