Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (10): 28-32    DOI: 10.13523/j.cb.2106006
    
Research on AAV9 Infectious Titer Detection Method Based on TCID50
WANG Cong1,2,LI Xiu2,NIU Miao2,DAI Yang-guang2,DONG Zhe-yue2,DONG Xiao-yan2,YU Shuang-qing2,*(),YANG Yi-shu1,*()
1 Beijing University of Technology, Beijing 100124,China
2 Beijing FivePlus Gene Technology Co., Ltd., Beijing 102629, China
Download: HTML   PDF(573KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a method for detecting the infectious titers of adeno-associated virus type 9 (AAV9) vector products based on the median tissue culture infective dose (TCID50). Methods: HEK-293 cells were co-infected with HSV1 containing rep and cap genes of AAV2 and gradient diluted AAV9 vector products. After 48 hours of culture, the AAV-specific inverted terminal repeats (ITR) were amplified by quantitative real-time PCR(qPCR), and the infectivity titer of the sample was calculated by the Kärber method based on the number of positive and negative infected wells. Results: The AAV9 vector product carrying the enhanced green fluorescent protein reporter gene was used to determine the optimal multiplicity of infection (MOI) of the helper virus HSV1-rc as 5. The infectious titer of AAV9-101 is 1.6×109 TCID50/mL. Conclusion: This method can detect the infectious titer of AAV9 vector products with repeatability.



Key wordsAdeno-associated virus type 9 vector      Infectious titer      Medina tissue culture infective dose     
Received: 03 June 2021      Published: 08 November 2021
ZTFLH:  Q819  
Corresponding Authors: Shuang-qing YU,Yi-shu YANG     E-mail: yushuangqing@five-plus.com.cn;yishu-y@bjut.edu.cn
Cite this article:

WANG Cong,LI Xiu,NIU Miao,DAI Yang-guang,DONG Zhe-yue,DONG Xiao-yan,YU Shuang-qing,YANG Yi-shu. Research on AAV9 Infectious Titer Detection Method Based on TCID50. China Biotechnology, 2021, 41(10): 28-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106006     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I10/28

Fig.1 PCR products amplified with rep or cap primers M: The molecular weight standard;1 and 3: HSV1-rc DNA used as template;2 and 4: Water used as template
Fig.2 Expression of AAV9-EGFP at different MOI of HSV1-rc
稀释倍数 CT 阳性孔数 阳性孔比
1 2 3 4 5 6 7 8 9 10
106 25.75 23.88 24.29 24.31 23.58 24.00 25.04 24.45 24.58 24.70 10 1
107 27.96 30.70 29.93 30.37 29.09 30.23 28.68 26.34 30.42 30.39 10 1
108 32.85 33.21 33.06 33.11 32.39 31.99 33.06 33.01 32.36 32.54 4 0.4
109 34.18 33.17 34.36 33.57 33.38 33.80 33.36 34.31 33.97 34.33 0 0
1010 33.12 35.01 34.32 32.17 33.66 34.27 33.76 34.11 33.20 33.38 0 0
NC 33.71 33.39 33.83 33.54 34.15 34.07 33.39 34.14 33.47 33.98 0 0
Table 1 CT value of AAV9-101 detected by qPCR
[1]   Wang D, Tai P W L, Gao G P. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019, 18(5): 358-378.
doi: 10.1038/s41573-019-0012-9 pmid: 30710128
[2]   张岩松, 陈丽娇, 张婷, 等. 基因治疗的研究进展. 中国细胞生物学学报, 2020, 42(10): 1858-1869.
[2]   Zhang Y S, Chen L J, Zhang T, et al. Research progresses of gene therapy. Chinese Journal of Cell Biology, 2020, 42(10): 1858-1869.
[3]   Goncalves M A. Adeno-associated virus: from defective virus to effective vector. Virology Journal, 2005, 2(1): 43.
doi: 10.1186/1743-422X-2-43
[4]   Schnödt M, Büning H. Improving the quality of adeno-associated viral vector preparations: the challenge of product-related impurities. Human Gene Therapy Methods, 2017, 28(3): 101-108.
doi: 10.1089/hgtb.2016.188
[5]   曹晖, 王宏伟, 谭淑萍, 等. 一种重组腺相关病毒载体感染滴度的测定方法: 中国, CN101386891A. 2009-03-18[2021-06-01].
[5]   Cao H, Wang H W, Tan S P, et al. A method for determining the infection titer of recombinant adeno-associated virus vectors: China, CN101386891A. 2009-03-18[2021-06-01].
[6]   伍志坚, 吴小兵, 曹晖, 等. 一种高效的重组腺伴随病毒载体生产系统. 中国科学(C辑: 生命科学), 2001, 31(5): 423-430.
[6]   Wu Z J, Wu X B, Cao H, et al. An efficient recombinant adeno-associated virus vector production system. Scientia Sinica(Vitae), 2001, 31(5): 423-430.
[7]   伍志坚, 吴小兵, 侯云德. 具有AAV载体包装功能的重组HSV的产生. 科学通报, 1999, 44(5): 506-509.
[7]   Wu Z J, Wu X B, Hou Y D. Production of recombinant HSV with AAV vector packaging function. Chinese Science Bulletin, 1999, 44(5): 506-509.
[8]   Aurnhammer C, Haase M, Muether N, et al. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Human Gene Therapy Methods, 2012, 23(1): 18-28.
doi: 10.1089/hgtb.2011.034
[9]   张静, 李伟华, 陈顺英, 等. 用蚀斑法进行麻疹疫苗的病毒滴定. 微生物学免疫学进展, 1999(1): 37-40.
[9]   Zhang J, Li W H, Chen S Y, et al. Plaque assay for the titration of measles vaccine. Progress in Microbiology and Immunology, 1999(1): 37-40.
[10]   Zen Z, Espinoza Y, Bleu T, et al. Infectious titer assay for adeno-associated virus vectors with sensitivity sufficient to detect single infectious events. Human Gene Therapy, 2004, 15(7): 709-715.
doi: 10.1089/1043034041361262
[11]   Zolotukhin S, Byrne B J, Mason E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy, 1999, 6(6): 973-985.
pmid: 10455399
[12]   Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 2008, 16(6): 1073-1080.
doi: 10.1038/mt.2008.76 pmid: 18414476
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.