Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 51-64    DOI: 10.13523/j.cb.2101024
    
Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis
TANG Meng-tong1,2,3,WANG Zhao-guan1,2,3,LI Jiao-jiao1,2,3,QI Hao1,2,3,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Systems Bioengineering of Ministry of Education, Syn Bio Research Platform, Tianjin University, Tianjin 300072, China
3 Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University,Tianjin 300072,China
Download: HTML   PDF(13732KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Terminal deoxynucleotidyl transferase (TdT) is a member of the polymerase X family. Unlike typical DNA polymerases, TdT incorporates nucleotides at the 3'-end of single stranded DNA oligo in a unique template-free manner. Moreover, the high tolerance of TdT to substrates allows it to polymerize modified dNTP. Fluorescence-modified dNTPs, biotin-modified dNTPs and even artificial bases can be used as good substrates. These biochemical properties of TdT make it widely used in the fields of biosensing and nucleic acid synthesis, promote the development of many nucleic acid-based tools and methods, and lay the foundation for the development of enzymatic de novo DNA synthesis technology. The latest progress of cartilage 3D bioprinting and the limitations of current technology are also explained.



Key wordsTerminal deoxynucleotide transferase      Biosensor      Modified nucleotides      Nucleic acid synthesis     
Received: 19 January 2021      Published: 01 June 2021
ZTFLH:  Q812  
Corresponding Authors: Hao QI     E-mail: haoq@tju.edu.cn
Cite this article:

TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis. China Biotechnology, 2021, 41(5): 51-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101024     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/51

Fig.1 Domain of X family DNA polymerase and three-dimensional structure of TdT (a) Domain organization of X-family DNA polymerases (b) Three-dimensional structure of TdT
Target Linear range Limit of
detection
Detection
time
Signal
recognition
Signal
transduction
Output
signal
Reference
TdT 0.4-90 U/mL 0.08 U/mL 60 min Nucleotide Electrochemistry Current [28]
Thrombin 0.5×105-1×105
pmol/L
0.31 pmol/L 60 min Nucleotide
probe
Electrochemistry Current [29]
Cardiac
troponin I
0.5×102 -1×102
ng/mL
40 pg/mL 80 min Aptamer Electrochemistry Current [30]
Mycotoxins 1×103-1×103
ng/mL
0.85 ng/mL 80 min Nucleotide
probe
Electrochemistry Current [31]
EcoRI
ExoIII
0-10 U
0-4 U
0.062 9 U/
0.008 67 U
120 min Nucleotide Photochemistry Fluorescence [32]
Dam MTase 1.59×10-3
- 3.18×10-3 U/mL
1.26×10-3
U/mL
120 min Nucleotide Photochemistry Fluorescence [33]
Uracil-DNA
glycosylase
2×10-5- 2×10-3
U/mL
5×10-6 U/mL 210 min Nucleotide Photochemistry Fluorescence [34]
Exosome 3.6×102 - 7.19×106
particles/μL
3.6×102
particles/μL
90 min Aptamer Photochemistry Fluorescence [35]
miRNAs 5×10- 1×103
pmol/L
200 pmol/L 480 min Nucleotide
probe
Photochemistry Fluorescence [36]
Exosomes 9.75 × 103-1.95 × 106
particles/μL
6.7 × 103
particles/μL
90 min Antibody Photochemistry Visual light [37]
Table 1 Summary of partial biosensors based on TdT
Fig.2 The composition and principle of TdT-based biosensors Biosensor is composed of recognition element, physical and chemical transducer, signal amplification and signal analysis system. When the recognition element detects the target, TdT polymerization reaction is induced to amplify the signal, and then the biological signal is transformed into electrical signal, optical signal and visual signal output
Fig.3 The principle of transforming TdT-mediated DNA amplification signals into electrical signals (a) Electrical signal output based on DNA-wrapped silver nanoclusters (b) Electrical signal output based on G-quadruplexes combined with hemin (c) Electrical signal is generated by hybridization of MB-polyA with poly-T (d) Electrical signal is blocked by the accumulation of large amounts of ssDNA
Fig.4 The principle of TdT-mediated fluorescence biosensor (a) The principle of TdT-combined CRISPR-Cas12a method for UDG and Dam activity assay (b) The principle of exosomes detection based on TdT-mediated signal amplification (c) The principle of the miRNA-21 detection based on duplex-specific nuclease amplification and TdT-mediated CuNCs
Fig.5 The working principle of the exosome detection system based on TdT amplification
Fig.6 The chemical structure modified nucleotide and the application of TdT in nucleic acid modification field
Fig.7 Schematic illustration of the analysis of DNA damage by single-molecule counting
Fig.8 Two strategies for DNA synthesis by enzymatic methods (a) The principle of de novo DNA synthesis using TdT-dNTP conjugate (b) An enzymatic synthesis strategy for storing information in DNA
[1]   Bell S P, Dutta A. DNA replication in eukaryotic cells. Annual Review of Biochemistry, 2002,71(1):333-374.
doi: 10.1146/annurev.biochem.71.110601.135425
[2]   Lehman I R. Discovery of DNA polymerase. Journal of Biological Chemistry, 2003,278(37):34733-34738.
doi: 10.1074/jbc.X300002200
[3]   Schmitt M W, Matsumoto Y, Loeb L A. High fidelity and lesion bypass capability of human DNA polymerase Δ. Biochimie, 2009,91(9):1163-1172.
doi: 10.1016/j.biochi.2009.06.007
[4]   Beard W A, Wilson S H. Structure and mechanism of DNA polymerase Β. Chemical Reviews, 2006,106(2):361-382.
doi: 10.1021/cr0404904
[5]   Suzuki T, Grúz P, Honma M, et al. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses. DNA Repair, 2016,45:34-43.
doi: 10.1016/j.dnarep.2016.06.002
[6]   Motea E A, Berdis A J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2010,1804(5):1151-1166.
doi: 10.1016/j.bbapap.2009.06.030
[7]   Tang L, Navarro L A, Chilkoti A, et al. High-molecular-weight polynucleotides by transferase-catalyzed living chain-growth polycondensation. Angewandte Chemie (International Ed in English), 2017,56(24):6778-6782.
doi: 10.1002/anie.201700991
[8]   Bollum F J. Thermal conversion of nonpriming deoxyribonucleic acid to primer. The Journal of Biological Chemistry, 1959,234:2733-2734.
doi: 10.1016/S0021-9258(18)69770-4
[9]   Boubakour-Azzouz I, Bertrand P, Claes A, et al. Terminal deoxynucleotidyl transferase requires KU80 and XRCC4 to promote N-addition at non-V(D)J chromosomal breaks in non-lymphoid cells. Nucleic Acids Research, 2012,40(17):8381-8391.
pmid: 22740656
[10]   Purugganan M M, Shah S, Kearney J F, et al. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Research, 2001,29(7):1638-1646.
pmid: 11266568
[11]   Thai T H, Purugganan M M, Roth D B, et al. Distinct and opposite diversifying activities of terminal transferase splice variants. Nature Immunology, 2002,3(5):457-462.
doi: 10.1038/ni788
[12]   Thai T H, Kearney J F. Isoforms of terminal deoxynucleotidyltransferase: developmental aspects and function. Advances in Immunology. Amsterdam: Elsevier, 2005: 113-136.
[13]   Bollum F J. Calf thymus polymerase. Journal of Biological Chemistry, 1960,235(8):2399-2403.
doi: 10.1016/S0021-9258(18)64634-4
[14]   Deibel M R, Coleman M S. Biochemical properties of purified human terminal deoxynucleotidyltransferase. The Journal of Biological Chemistry, 1980,255(9):4206-4212.
doi: 10.1016/S0021-9258(19)85653-3
[15]   Chang L M, Rafter E, Rusquet-Valerius R, et al. Expression and processing of recombinant human terminal transferase in the baculovirus system. The Journal of Biological Chemistry, 1988,263(25):12509-12513.
doi: 10.1016/S0021-9258(18)37784-6
[16]   Boulé J B, Johnson E, Rougeon F, et al. High-level expression of murine terminal deoxynucleotidyl transferase in Escherichia coli grown at low temperature and overexpressingargU tRNA. Molecular Biotechnology, 1998,10(3):199-208.
doi: 10.1007/BF02740839
[17]   Chua J P S, Go M K, Osothprarop T, et al. Evolving a thermostable terminal deoxynucleotidyl transferase. ACS Synthetic Biology, 2020,9(7):1725-1735.
doi: 10.1021/acssynbio.0c00078
[18]   Delarue M, Boulé J B, Lescar J, et al. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. The EMBO Journal, 2002,21(3):427-439.
doi: 10.1093/emboj/21.3.427
[19]   Romain F, Barbosa I, Gouge J, et al. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Nucleic Acids Research, 2009,37(14):4642-4656.
doi: 10.1093/nar/gkp460 pmid: 19502493
[20]   Gangi-Peterson L, Sorscher D H, Reynolds J W, et al. Nucleotide pool imbalance and adenosine deaminase deficiency induce alterations of N-region insertions during V(D)J recombination. Journal of Clinical Investigation, 1999,103(6):833-841.
pmid: 10079104
[21]   Loc’H J, Rosario S, Delarue M. Structural basis for a new templated activity by terminal deoxynucleotidyl transferase: implications for V(D)J recombination. Structure, 2016,24(9):1452-1463.
doi: 10.1016/j.str.2016.06.014
[22]   Anderson R S, Bollum F J, Beattie K L. Pyrophosphorolytic dismutation of oligodeoxy-nucleotides by terminal deoxynucleotidyltransferase. Nucleic Acids Research, 1999,27(15):3190-3196.
pmid: 10454617
[23]   Boulé J B, Rougeon F, Papanicolaou C. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. Journal of Biological Chemistry, 2001,276(33):31388-31393.
doi: 10.1074/jbc.M105272200
[24]   Goering A W, Li J, McClure R A, et al. In vitro reconstruction of nonribosomal peptide biosynthesis directly from DNA using cell-free protein synthesis. ACS Synthetic Biology, 2017,6(1):39-44.
doi: 10.1021/acssynbio.6b00160
[25]   Röthlisberger P, Levi-Acobas F, Leumann C J, et al. Enzymatic synthesis of biphenyl-DNA oligonucleotides. Bioorganic & Medicinal Chemistry, 2020,28(11):115487.
doi: 10.1016/j.bmc.2020.115487
[26]   Berdis A J, McCutcheon D. The use of non-natural nucleotides to probe template-independent DNA synthesis. ChemBioChem, 2007,8(12):1399-1408.
doi: 10.1002/(ISSN)1439-7633
[27]   Gouge J, Rosario S, Romain F, et al. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. Journal of Molecular Biology, 2013,425(22):4334-4352.
doi: 10.1016/j.jmb.2013.07.009
[28]   Chang L M, Bollum F J. Multiple roles of divalent cation in the terminal deoxynucleotidyltransferase reaction. Journal of Biological Chemistry, 1990,265(29):17436-17440.
doi: 10.1016/S0021-9258(18)38181-X
[29]   Yuan Y J, Li W H, Liu Z L, et al. A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template. Biosensors and Bioelectronics, 2014,61:321-327.
doi: 10.1016/j.bios.2014.05.038
[30]   Lei S, Liu Z, Xu L L, et al. A “signal-on” electrochemical biosensor based on DNAzyme-driven bipedal DNA walkers and TdT-mediated cascade signal amplification strategy. Analytica Chimica Acta, 2020,1100:40-46.
doi: 10.1016/j.aca.2019.12.008
[31]   Yuan P X, Deng S Y, Zheng C Y, et al. In situ formed copper nanoparticles templated by TdT-mediated DNA for enhanced SPR sensor-based DNA assay. Biosensors and Bioelectronics, 2017,97:1-7.
doi: 10.1016/j.bios.2017.05.033
[32]   张媛, 梁嘉慧, 罗云波, 等. 末端脱氧核酸转移酶介导的功能核酸生物传感器研究进展. 生物技术通报, 2019,35(1):161-169.
[32]   Zhang Y, Liang J H, Luo Y B, et al. Research progress on functional nucleic acid biosensors mediated by terminal deoxynucleotidyl transferase. Biotechnology Bulletin, 2019,35(1):161-169.
[33]   Abnous K, Danesh N M, Nameghi M A, et al. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosensors and Bioelectronics, 2019,144:111674.
doi: 10.1016/j.bios.2019.111674
[34]   Zhao Y J, Ma W J, Zou S Z, et al. Terminal deoxynucleotidyl transferase-initiated molecule beacons arrayed aptamer probe for sensitive detection of metastatic colorectal cancer cells. Talanta, 2019,202:152-158.
doi: 10.1016/j.talanta.2019.04.065
[35]   Fan K M, Zheng C K, Zhao Y Y, et al. Label-free ultrasensitive determination of EcoRI activity based on terminal deoxynucleotidyl transferase generated G-quadruplexes. Microchemical Journal, 2018,143:286-291.
doi: 10.1016/j.microc.2018.08.024
[36]   Wang L, Pan Y H, Liu Y F, et al. Fabrication of an aptamer-coated liposome complex for the detection and profiling of exosomes based on terminal deoxynucleotidyl transferase-mediated signal amplification. ACS Applied Materials & Interfaces, 2020,12(1):322-329.
[37]   Du Y M, Zhou Y Y, Wen Y L, et al. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157: H7 and tropomyosin. Microchimica Acta, 2019,186(12):1-10.
doi: 10.1007/s00604-018-3127-5
[38]   Hu Y F, Zhang Q Q, Guo Z Y, et al. In situ grown DNA nanotail-templated silver nanoclusters enabling label-free electrochemical sensing of terminal deoxynucleotidyl transferase activity. Biosensors and Bioelectronics, 2017,98:91-99.
doi: 10.1016/j.bios.2017.06.017
[39]   Huang X Y, Niu W C, Wu J Y, et al. A triple-amplification differential pulse voltammetry for sensitive detection of DNA based on exonuclease III, strand displacement reaction and terminal deoxynucleotidyl transferase. Biosensors and Bioelectronics, 2019,143:111609.
doi: 10.1016/j.bios.2019.111609
[40]   Lang M J, Luo D, Yang G Y, et al. An ultrasensitive electrochemical sensing platform for the detection of cTnI based on aptamer recognition and signal amplification assisted by TdT. RSC Advances, 2020,10(60):36396-36403.
doi: 10.1039/D0RA05171C
[41]   Wang Y, Zhang X D, Zhan Y X, et al. Au@Fe3O4 nanocomposites as conductive bridges coupled with a bi-enzyme-aided system to mediate gap-electrical signal transduction for homogeneous aptasensor mycotoxins detection. Sensors and Actuators B: Chemical, 2020,321:128553.
doi: 10.1016/j.snb.2020.128553
[42]   Chen X L, Cao G H, Wang X F, et al. Terminal deoxynucleotidyl transferase induced activators to unlock the trans-cleavage of CRISPR/Cpf 1 (TdT-IU- CRISPR/Cpf 1): an ultrasensitive biosensor for Dam MTase activity detection. Biosensors and Bioelectronics, 2020,163:112271.
doi: 10.1016/j.bios.2020.112271
[43]   Du Y C, Wang S Y, Wang Y X, et al. Terminal deoxynucleotidyl transferase combined CRISPR-Cas12a amplification strategy for ultrasensitive detection of uracil-DNA glycosylase with zero background. Biosensors and Bioelectronics, 2021,171:112734.
doi: 10.1016/j.bios.2020.112734
[44]   He J L, Mei T T, Tang L, et al. DSN/TdT recycling digestion based cyclic amplification strategy for microRNA assay. Talanta, 2020,219:121173.
doi: 10.1016/j.talanta.2020.121173
[45]   Chen M J, Ma C B, Yan Y, et al. A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen. Analytical and Bioanalytical Chemistry, 2019,411(22):5779-5784.
doi: 10.1007/s00216-019-01958-0
[46]   Que H Y, Yan X Y, Guo B, et al. Terminal deoxynucleotidyl transferase and rolling circle amplification induced G-triplex formation: a label-free fluorescent strategy for DNA methyltransferase activity assay. Sensors and Actuators B: Chemical, 2019,291:394-400.
doi: 10.1016/j.snb.2019.04.091
[47]   Liu G R, He W L, Liu C H. Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs). Talanta, 2019,195:320-326.
doi: 10.1016/j.talanta.2018.11.083
[48]   Li Y T, Tang D H, Zhu L, et al. Label-free detection of miRNA cancer markers based on terminal deoxynucleotidyl transferase-induced copper nanoclusters. Analytical Biochemistry, 2019,585:113346.
doi: 10.1016/j.ab.2019.113346
[49]   Wang Y, Liu J, Zhou H. Visual detection of Cucumber green mottle mosaic virus based on terminal deoxynucleotidyl transferase coupled with DNAzymes amplification. Sensors (Basel, Switzerland), 2019,19(6):E1298.
[50]   Huang Z P, Lin Q Y, Ye X, et al. Terminal deoxynucleotidyl transferase based signal amplification for enzyme-linked aptamer-sorbent assay of colorectal cancer exosomes. Talanta, 2020,218:121089.
doi: 10.1016/j.talanta.2020.121089
[51]   Zamecnik P C, Stephenson M L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proceedings of the National Academy of Sciences of the United States of America, 1978,75(1):280-284.
[52]   Dey S, Sczepanski J T. In vitro selection of l-DNA aptamers that bind a structured d-RNA molecule. Nucleic Acids Research, 2020,48(4):1669-1680.
doi: 10.1093/nar/gkz1236
[53]   Meltzer J C, Sanders V, Grimm P C, et al. Nonradioactive Northern blotting with biotinylated and digoxigenin-labeled RNA probes. Electrophoresis, 1998,19(8-9):1351-1355.
pmid: 9694280
[54]   Wang Y Q, Cheng J, Zhao D, et al. Designed DNA nanostructure grafted with erlotinib for non-small-cell lung cancer therapy. Nanoscale, 2020,12(47):23953-23958.
doi: 10.1039/D0NR06945K
[55]   Zhang L, Yang Y B, Tan J, et al. Chemically modified nucleic acid biopolymers used in biosensing. Materials Chemistry Frontiers, 2020,4(5):1315-1327.
doi: 10.1039/D0QM00026D
[56]   Caruthers M H. A brief review of DNA and RNA chemical synthesis. Biochemical Society Transactions, 2011,39(2):575-580.
doi: 10.1042/BST0390575 pmid: 21428942
[57]   Jakubovska J, Tauraitè D, Birštonas L, et al. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA . Nucleic Acids Research, 2018,46(12):5911-5923.
doi: 10.1093/nar/gky435 pmid: 29846697
[58]   Obeid S, Baccaro A, Welte W, et al. Structural basis for the synthesis of nucleobase modified DNA by Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(50):21327-21331.
[59]   Evans S J, Fogg M J, Mamone A, et al. Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus. Nucleic Acids Research, 2000,28(5):1059-1066.
pmid: 10666444
[60]   Guerra C E. Analysis of oligonucleotide microarrays by 3' end labeling using fluorescent nucleotides and terminal transferase. BioTechniques, 2006,41(1):53-56.
pmid: 16869513
[61]   Jahn K, Tørring T, Voigt N V, et al. Functional patterning of DNA origami by parallel enzymatic modification. Bioconjugate Chemistry, 2011,22(4):819-823.
doi: 10.1021/bc2000098
[62]   Lukoseviciute M, Ling I T C, Senanayake U, et al. Tissue-specific in vivo biotin chromatin immunoprecipitation with sequencing in zebrafish and chicken. STAR Protocols, 2020,1(2):100066.
doi: 10.1016/j.xpro.2020.100066
[63]   Lin K, Yan Q, Mitchell A, et al. A simple method for non-denaturing purification of biotin-tagged proteins through competitive elution with free biotin. BioTechniques, 2020,68(1):41-44.
doi: 10.2144/btn-2019-0088
[64]   Jang E K, Son R G, Pack S P. Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Research, 2019,47(17):e102.
doi: 10.1093/nar/gkz612
[65]   Zhang Y, Hua R N, Zhang C Y. Analysis of the isolated and the clustered DNA damages by single-molecule counting. Analytical Chemistry, 2019,91(16):10381-10385.
doi: 10.1021/acs.analchem.9b02694 pmid: 31364352
[66]   Miura F, Fujino T, Kogashi K, et al. Triazole linking for preparation of a next-generation sequencing library from single-stranded DNA. Nucleic Acids Research, 2018,46(16):e95.
doi: 10.1093/nar/gky452
[67]   Feldman A, Dien V T, Karadeema R J, et al. Optimization of replication, transcription, and translation in a semi-synthetic organism. Journal of the American Chemical Society, 2019,141(27):10644-10653.
doi: 10.1021/jacs.9b02075 pmid: 31241334
[68]   Zhang Y, Ptacin J L, Fischer E C, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature, 2017,551(7682):644-647.
doi: 10.1038/nature24659
[69]   Galindo-Murillo R, Barroso-Flores J. Hydrophobic unnatural base pairs show a Watson-Crick pairing in micro-second molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2020,38(14):4098-4106.
doi: 10.1080/07391102.2019.1671898
[70]   Lavergne T, Malyshev D A, Romesberg F E. Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairs. Chemistry (Weinheim an Der Bergstrasse, Germany), 2012,18(4):1231-1239.
[71]   Singh I, Laos R, Hoshika S, et al. Snapshots of an evolved DNA polymerase pre- and post-incorporation of an unnatural nucleotide. Nucleic Acids Research, 2018,46(15):7977-7988.
doi: 10.1093/nar/gky552 pmid: 29986111
[72]   Hoshika S, Leal N A, Kim M J, et al. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science (New York), 2019,363(6429):884-887.
doi: 10.1126/science.aat0971
[73]   Kobayashi T, Takezawa Y, Sakamoto A, et al. Enzymatic synthesis of ligand-bearing DNAs for metal-mediated base pairing utilising a template-independent polymerase. Chemical Communications (Cambridge, England), 2016,52(19):3762-3765.
doi: 10.1039/C5CC10039A
[74]   Röthlisberger P, Levi-Acobas F, Sarac I, et al. On the enzymatic incorporation of an imidazole nucleotide into DNA. Organic & Biomolecular Chemistry, 2017,15(20):4449-4455.
[75]   Röthlisberger P, Levi-Acobas F, Sarac I, et al. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. Journal of Inorganic Biochemistry, 2019,191:154-163.
doi: S0162-0134(18)30503-8 pmid: 30529723
[76]   Templin M F, Stoll D, Schrenk M, et al. Protein microarray technology. Trends in Biotechnology, 2002,20(4):160-166.
doi: 10.1016/S0167-7799(01)01910-2
[77]   Tsai H, Doong R, Lin C. A strategy for multi-protein-immobilization using N-succinimidyl 4-benzoylbenzoic acid as the photolabile ligand. Japan Society for Analytical Chemistry, 2002,17:269-272.
[78]   Takahara M, Hayashi K, Goto M, et al. Enzymatic conjugation of multiple proteins on a DNA aptamer in a tail-specific manner. Biotechnology Journal, 2016,11(6):814-823.
doi: 10.1002/biot.201500560 pmid: 27119459
[79]   Takahara M, Wakabayashi R, Minamihata K, et al. Primary amine-clustered DNA aptamer for DNA-protein conjugation catalyzed by microbial transglutaminase. Bioconjugate Chemistry, 2017,28(12):2954-2961.
doi: 10.1021/acs.bioconjchem.7b00594 pmid: 29131594
[80]   Jang E K, Ki M R, Pack S P. Design of reactive-end DNA oligomers via incorporation of oxanine into oligonucleotides using terminal deoxynucleotidyl transferase. Process Biochemistry, 2017,62:99-105.
doi: 10.1016/j.procbio.2017.07.011
[81]   Jensen M A, Davis R W. Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges. Biochemistry, 2018,57(12):1821-1832.
doi: 10.1021/acs.biochem.7b00937
[82]   Palluk S, Arlow D H, de Rond de Rond, et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nature Biotechnology, 2018,36(7):645-650.
doi: 10.1038/nbt.4173
[83]   Jensen M A, Griffin P, Davis R W. Free-running enzymatic oligonucleotide synthesis for data storage applications. bioRxiv, 2018: 355719.
[84]   Lee H H, Kalhor R, Goela N, et al. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nature Communications, 2019,10:2383.
doi: 10.1038/s41467-019-10258-1
[85]   Lee H, Wiegand D J, Griswold K, et al. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nature Communications, 2020,11:5246.
doi: 10.1038/s41467-020-18681-5
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[3] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[4] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[5] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[6] YI Yu, WANG Min-jun, MEI Jian-feng, CHEN Jian-shu, ZHANG Yan-lu, YING Guo-qing. Construction and Characterization of Electrochemical Biosensor based on Endotoxin Aptameer[J]. China Biotechnology, 2017, 37(8): 46-50.
[7] WEN Guo-xia, HUANG Zi-hao, TAN Jun-jie, KAN Nai-peng, LING Jing-yi, ZHANG Xia, LIU Gang, CHEN Hui-peng. Construction of XylR-Pugene Lines in Escherichia coli to Detect 2,4,6-trinitrotoluene[J]. China Biotechnology, 2017, 37(7): 105-114.
[8] DENG Han-chao, YIN Chang-cheng, LIU Guo-zhen, LIN Jian-rong, DENG Ping-jian. Progress in Nucleic Acid Detection Techniques for Genetically Modified Organisms[J]. China Biotechnology, 2011, 31(01): 86-95.
[9] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[10] ZHENG Hui, LI Qiu-Shun, GAO An-Heng, ZHANG Li-Qun, MA Yao-Hong, SHI Jian-Guo. Key Technologies and Progress of Amperometric Biosensors Based on Dehydrogenases[J]. China Biotechnology, 2010, 30(09): 118-123.
[11] Hao Jiang Hongmin Zhou Leike Li Linjing Bai Cunxian Song Zhaofeng Luo. Methods for Regeneration of Five Kinds of SPR Sensor Chips and Their Applications[J]. China Biotechnology, 2009, 29(01): 44-49.
[12] 尹娟 YIN Juan. Research Progress on Determination of Cellulase Activity and Gene Expression by Biosensor[J]. China Biotechnology, 2009, 29(01): 86-92.
[13] . A Promising Biological Detection Technology-Biosensor[J]. China Biotechnology, 2008, 28(5): 141-147.