Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (4): 81-90    DOI: 10.13523/j.cb.2012057
    
Research Progress on the Production of Bioactive Compounds from Marine Diatoms
ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu()
Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
Download: HTML   PDF(4535KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Bioactive compounds have a broad range of applications in food, feed, cosmetic, nutraceutical, and pharmaceutical industries. Thus, the studies of bioactive compounds have been gaining great attention from science and the public in recent decades. Given the advantages of fast growth, high content of bioactive compounds, easy to be cultured and scaled up, and effective biorefinery, marine diatoms were considered to be the most promising producers of natural bioactive compounds. Although a large number of studies have been carried out to enhance the production of bioactive compounds from marine diatoms, a commercial production scale has seldom been realized due to several intrinsic shortcomings such as old culture technology and high production cost. This review aims to provide an overview of bioactive compounds from marine diatoms and their high production strategies. The path forward for further commercial production of the bioactive compounds from marine diatoms with respect to 3 different opportunities is also discussed, which will in turn accelerate the development of microalgae industry and provide support for human health and high-quality life.



Key wordsMarine diatoms      Bioactive compounds      Screening      Environmental factors      Culture mode     
Received: 28 December 2020      Published: 30 April 2021
ZTFLH:  Q819  
Corresponding Authors: Cheng-wu ZHANG     E-mail: tzhangcw@jnu.edu.cn
Cite this article:

ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms. China Biotechnology, 2021, 41(4): 81-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2012057     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I4/81

Fig.1 Chemical structure of 4 selected bioactive compounds from marine diatoms (a) Fucoxanthin (b) EPA (c)DHA (d) Chrysolaminarin
Strain Fucoxanthin
content (% DW)
EPA
content (% DW)
DHA
content (% DW)
Chrysolaminarin
content (% DW)
Reference
Phaeodactylum tricornutum 2.43 [29]
Phaeodactylum tricornutum 0.6~1 1.5~2.3 14.7~17.1 [30]
Phaeodactylum tricornutum 1.0~3.7 [31]
Phaeodactylum tricornutum 0.3~0.8 0.1~0.4 [32]
Phaeodactylum tricornutum 1.9~3.3 [33]
Phaeodactylum tricornutum 1.8~2.8 [34]
Phaeodactylum tricornutum 1.3 2.9 0.1 [35]
Thalassiosira weissflogii 0.6~0.8 1.5~2.8 [9]
Odontella aurita 0.6~2.3 1.7~3.2 10.5~60.3 [36]
Odontella aurita 1.5 [23]
Odontella aurita 0.8~1.1 [37]
Nitzschia laevi 1.0~1.6 2.3~3.4 [38]
Nitzschia laevi 0.5~1.2 [39]
Nitzschia laevi 2.9~3.5 [40]
Table 1 Contents of 4 bioactive compounds from some marine diatoms in literatures
Fig.2 The quick sedimentation process of O. aurita
[1]   Virginia A E. The life of diatoms in the world’s oceans. Nature, 2009,459(7244):185-192.
doi: 10.1038/nature08057 pmid: 19444204
[2]   Martin-Jezequel V, Hildebrand M, Brzezinski M A. Silicon metabolism in diatoms: implications for growth. Journal of Phycology, 2000,36(5):821-840.
[3]   高亚辉, 梁君荣, 陈长平, 等. 海洋硅藻多样性与生态作用研究. 厦门大学学报(自然科学版), 2011,50(2):455-464.
[3]   Gao Y H, Liang J R, Chen C P, et al. Studies on biodiversity and ecological importance of marine diatoms. Journal of Xiamen University (Natural Science), 2011,50(2):455-464.
[4]   金德祥. 硅藻分类系统的探讨. 厦门大学学报(自然科学版), 1978,17(2):31-50.
[4]   Chin T G. A discussion on the phylogenesis of diatoms. Journal of Xiamen University (Natural Science), 1978,17(2):31-50.
[5]   Tréguer P, Nelson D M, van Bennekom A J, et al. The silica balance in the world ocean: a reestimate. Science, 1995,268(5209):375-379.
[6]   Dunstan G A, Volkman J K, Barrett S M, et al. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry, 1993,35(1):155-161.
[7]   Yang R Q, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Critical Reviews in Biotechnology, 2020,40(7):993-1009.
doi: 10.1080/07388551.2020.1805402 pmid: 32777952
[8]   Butler T, Kapoore R V, Vaidyanathan S. Phaeodactylum tricornutum: a diatom cell factory. Trends in Biotechnology, 2020,38(6):606-622.
[9]   Marella T K, Tiwari A. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresource Technology, 2020,307:123245.
pmid: 32234591
[10]   Savio S, Farrotti S, Paris D, et al. Value-added co-products from biomass of the diatoms Staurosirella pinnata and Phaeodactylum tricornutum. Algal Research, 2020,47:101830.
[11]   Miyashita K, Hosokawa M. Fucoxanthin in the management of obesity and its related disorders. Journal of Functional Foods, 2017,36:195-202.
[12]   Zhang H, Tang Y B, Zhang Y, et al. Fucoxanthin: a promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 2015,2015:723515.
[13]   Liu M J, Li W W, Chen Y, et al. Fucoxanthin: a promising compound for human inflammation-related diseases. Life Sciences, 2020,255:117850.
doi: 10.1016/j.lfs.2020.117850 pmid: 32470447
[14]   Borow K M, Nelson J R, Mason R P. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis, 2015,242(1):357-366.
[15]   Yamakawa K, Shimabukuro M, Higa N, et al. Eicosapentaenoic acid supplementation changes fatty acid composition and corrects endothelial dysfunction in hyperlipidemic patients. Cardiology Research and Practice, 2012,2012:754181.
doi: 10.1155/2012/754181 pmid: 23326753
[16]   Chang D Y, Zhao J H, Zhang X T, et al. Effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior in rats. International Immunopharmacology, 2019,75:105788.
doi: 10.1016/j.intimp.2019.105788 pmid: 31377587
[17]   Horrocks L A, Yeo Y K. Health benefits of docosahexaenoic acid (DHA). Pharmacological Research, 1999,40(3):211-225.
pmid: 10479465
[18]   Zhang L, Guo Z S, Xie S J, et al. The performance of galactomannan in combination with 1, 3-β-D-glucan or Aspergillus-lateral flow device for the diagnosis of invasive aspergillosis: Evidences from 13 studies. Diagnostic Microbiology and Infectious Disease, 2019,93(1):44-53.
doi: 10.1016/j.diagmicrobio.2018.08.005 pmid: 30279025
[19]   Bashir K M I, Choi J S. Clinical and physiological perspectives of β-glucans: the past, present, and future. International Journal of Molecular Sciences, 2017,18(9):1906.
[20]   毛得奖, 朱亚玲, 邢新会. 天蓝色素马雷讷素(marennine)研究现状. 食品科学, 2011,32(5):321-325.
[20]   Mao D J, Zhu Y L, Xing X H. Research progress of azure pigment marennine. Food Science, 2011,32(5):321-325.
[21]   Pouvreau J B, Morançais M, Taran F, et al. Antioxidant and free radical scavenging properties of marennine, a blue-green polyphenolic pigment from the diatom Haslea ostrearia (gaillon/bory) simonsen responsible for the natural greening of cultured oysters. Journal of Agricultural and Food Chemistry, 2008,56(15):6278-6286.
pmid: 18636683
[22]   Gastineau R, Turcotte F, Pouvreau J B, et al. Marennine, promising blue pigments from a widespread Haslea diatom species complex. Marine Drugs, 2014,12(6):3161-3189.
pmid: 24879542
[23]   Guo B B, Liu B, Yang B, et al. Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Marine Drugs, 2016,14(7):125.
[24]   Tan C K, Johns M R. Screening of diatoms for heterotrophic eicosapentaenoic acid production. Journal of Applied Phycology, 1996,8(1):59-64.
[25]   Wu H L, Li T, Wang G H, et al. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from different origins. Chinese Journal of Oceanology and Limnology, 2016,34(2):391-398.
[26]   Renaud S M, Thinh L V, Parry D L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture, 1999,170(2):147-159.
[27]   Chen Y C. The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chemistry, 2012,131(1):211-219.
[28]   Yi Z Q, Xu M N, Magnusdottir M, et al. Photo-oxidative stress-driven mutagenesis and adaptive evolution on the marine diatom Phaeodactylum tricornutum for enhanced carotenoid accumulation. Marine Drugs, 2015,13(10):6138-6151.
doi: 10.3390/md13106138 pmid: 26426027
[29]   Aslanbay Guler B, Deniz I, Demirel Z, et al. Comparison of different photobioreactor configurations and empirical computational fluid dynamics simulation for fucoxanthin production. Algal Research, 2019,37:195-204.
[30]   Gao B Y, Chen A L, Zhang W Y, et al. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. Journal of Ocean University of China, 2017,16(5):916-924.
[31]   Fernández F G, Pérez J A, Sevilla J M, et al. Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering, 2000,68(2):173-183.
doi: 10.1002/(sici)1097-0290(20000420)68:2<173::aid-bit6>3.0.co;2-c pmid: 10712733
[32]   Hamilton M L, Powers S, Napier J A, et al. Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Marine Drugs, 2016,14(3):53.
[33]   Fernandez Sevilla J M, Ceron Garcia M C, Sanchez Miron A, et al. Pilot-plant-scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode. Biotechnology Progress, 2004,20(3):728-736.
doi: 10.1021/bp034344f pmid: 15176875
[34]   Rodolfi L, Biondi N, Guccione A, et al. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnology and Bioengineering, 2017,114(10):2204-2210.
doi: 10.1002/bit.26353 pmid: 28627710
[35]   Delbrut A, Albina P, Lapierre T, et al. Fucoxanthin and polyunsaturated fatty acids co-extraction by a green process. Molecules (Basel, Switzerland), 2018,23(4):874.
[36]   Xia S, Gao B Y, Fu J Q, et al. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. Journal of Bioscience and Bioengineering, 2018,126(6):723-729.
doi: 10.1016/j.jbiosc.2018.06.002 pmid: 29958771
[37]   Xia S, Wan L L, Li A F, et al. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chinese Journal of Oceanology and Limnology, 2013,31(6):1163-1173.
[38]   Lu X, Liu B, He Y J, et al. Novel insights into mixotrophic cultivation of Nitzschia laevis for co-production of fucoxanthin and eicosapentaenoic acid. Bioresource Technology, 2019,294:122145.
doi: 10.1016/j.biortech.2019.122145 pmid: 31539854
[39]   Lu X, Sun H, Zhao W Y, et al. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Marine Drugs, 2018,16(7):219.
[40]   Wen Z Y, Jiang Y, Chen F. High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development. Process Biochemistry, 2002,37(12):1447-1453.
[41]   Ríos S D, Torres C M, Torras C, et al. Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresource Technology, 2013,136:617-625.
pmid: 23567739
[42]   Xia S, Wang K, Wan L L, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Marine Drugs, 2013,11(7):2667-2681.
pmid: 23880936
[43]   Dinamarca J, Levitan O, Kumaraswamy G K, et al. Overexpression of a diacylglycerol acyltransferase gene in Phaeodactylum tricornutum directs carbon towards lipid biosynthesis. Journal of Phycology, 2017,53(2):405-414.
doi: 10.1111/jpy.12513 pmid: 28078675
[44]   Levitan O, Dinamarca J, Zelzion E, et al. An RNA interference knock-down of nitrate reductase enhances lipid biosynthesis in the diatom Phaeodactylum tricornutum. The Plant Journal, 2015,84(5):963-973.
pmid: 26473332
[45]   Trentacoste E M, Shrestha R P, Smith S R, et al. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. PNAS, 2013,110(49):19748-19753.
doi: 10.1073/pnas.1309299110 pmid: 24248374
[46]   Hamilton M L, Haslam R P, Napier J A, et al. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabolic Engineering, 2014,22:3-9.
pmid: 24333273
[47]   Eilers U, Bikoulis A, Breitenbach J, et al. Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of Applied Phycology, 2016,28:123-129.
[48]   Radakovits R, Eduafo P M, Posewitz M C. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metabolic Engineering, 2011,13(1):89-95.
pmid: 20971205
[49]   Zaslavskaia L A, Lippmeier J C, Shih C, et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science, 2001,292(5524):2073-2075.
doi: 10.1126/science.160015 pmid: 11408656
[50]   Daboussi F, Leduc S, Maréchal A, et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nature Communications, 2014,5(1):3831.
[51]   Serif M, Lepetit B, Weiβert K, et al. A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal Research, 2017,23:186-195.
[52]   Stukenberg D, Zauner S, Dell’Aquila G, et al. Optimizing CRISPR/Cas9 for the diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2018,9:740.
pmid: 29928285
[53]   Nawaly H, Tsuji Y, Matsuda Y. Rapid and precise genome editing in a marine diatom, Thalassiosira pseudonana by Cas9 nickase (D10A). Algal Research, 2020,47:101855.
[54]   Chrismadha T, Borowitzka M A. Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology, 1994,6:67-74.
[55]   Sirisuk P, Ra C H, Jeong G T, et al. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresource Technology, 2018,253:175-181.
[56]   Jungandreas A, Schellenberger Costa B, Jakob T, et al. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS One, 2014,9(8):e99727.
pmid: 25111046
[57]   McClure D D, Luiz A, Gerber B, et al. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Research, 2018,29:41-48.
[58]   Nur M M A, Muizelaar W, Boelen P, et al. Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. Journal of Applied Phycology, 2019,31:111-122.
[59]   Huete-Ortega M, Okurowska K, Kapoore R V, et al. Effect of ammonium and high light intensity on the accumulation of lipids in Nannochloropsis oceanica (CCAP 849/10) and Phaeodactylum tricornutum (CCAP 1055/1). Biotechnology for Biofuels, 2018,11:60.
doi: 10.1186/s13068-018-1061-8 pmid: 29541157
[60]   Qiao H J, Cong C, Sun C X, et al. Effect of culture conditions on growth, fatty acid composition and DHA/EPA ratio of Phaeodactylum tricornutum. Aquaculture, 2016,452:311-317.
[61]   Mouget J L, Rosa P, Vachoux C, et al. Enhancement of marennine production by blue light in the diatom Haslea ostrearia. Journal of Applied Phycology, 2005,17(5):437-445.
[62]   Yongmanitchai W, Ward O P. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and Environmental Microbiology, 1991,57(2):419-425.
pmid: 2014989
[63]   Pasquet V, Ulmann L, Mimouni V, et al. Fatty acids profile and temperature in the cultured marine diatom Odontella aurita. Journal of Applied Phycology, 2014,26(6):2265-2271.
[64]   Jiang H M, Gao K S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (bacillariophyceae). Journal of Phycology, 2004,40(4):651-654.
[65]   Chen G Q, Jiang Y, Chen F. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chemistry, 2008,109(1):88-94.
pmid: 26054268
[66]   Indrayani I, Moheimani N R, de Boer K, et al. Temperature and salinity effects on growth and fatty acid composition of a halophilic diatom, Amphora sp. MUR258 (Bacillariophyceae). Journal of Applied Phycology, 2020,32:977-987.
[67]   Al-Hasan R H, Ali A M, Ka’Wash H H, et al. Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. Journal of Applied Phycology, 1990,2(3):215-222.
[68]   Clavero E, Hernández-Mariné M, Grimalt J O, et al. Salinity tolerance of diatoms from thalassic hypersaline environments. Journal of Phycology, 2000,36(6):1021-1034.
[69]   Scholz B, Liebezeit G. Compatible solutes in three marine intertidal microphytobenthic Wadden Sea diatoms exposed to different salinities. European Journal of Phycology, 2012,47(4):393-407.
[70]   张虎, 张桂艳, 温小斌, 等. pH对小球藻Chlorella sp.XQ-200419光合作用、生长和产油的影响. 水生生物学报, 2014,38(6):1084-1091.
[70]   Zhang H, Zhang G Y, Wen X B, et al. Effects of pH on the photosynthesis, growth and lipid production of Chlorella sp.XQ-200419. Acta Hydrobiologica Sinica, 2014,38(6):1084-1091.
[71]   Spilling K, Brynjólfsdóttir á, Enss D, et al. The effect of high pH on structural lipids in diatoms. Journal of Applied Phycology, 2013,25(5):1435-1439.
[72]   Frada M J, Burrows E H, Wyman K D, et al. Quantum requirements for growth and fatty acid biosynthesis in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae) in nitrogen replete and limited conditions. Journal of Phycology, 2013,49(2):381-388.
doi: 10.1111/jpy.12046 pmid: 27008524
[73]   Hao T B, Yang Y F, Balamurugan S, et al. Enrichment of f/2 medium hyperaccumulates biomass and bioactive compounds in the diatom Phaeodactylum tricornutum. Algal Research, 2020,47:101872.
[74]   Pérez-López P, González-García S, Allewaert C, et al. Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum. Science of the Total Environment, 2014, 466-467:991-1002.
[75]   Cañavate J P, Armada I, Hachero-Cruzado I. Aspects of phosphorus physiology associated with phosphate-induced polar lipid remodelling in marine microalgae. Journal of Plant Physiology, 2017,214:28-38.
doi: 10.1016/j.jplph.2017.03.019 pmid: 28423307
[76]   Brembu T, Mühlroth A, Alipanah L, et al. The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017,372(1728):20160406.
[77]   Yang Z K, Zheng J W, Niu Y F, et al. Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environmental Microbiology, 2014,16(6):1793-1807.
doi: 10.1111/1462-2920.12411 pmid: 24467511
[78]   Chauton M S, Olsen Y, Vadstein O. Biomass production from the microalga Phaeodactylum tricornutum: Nutrient stress and chemical composition in exponential fed-batch cultures. Biomass and Bioenergy, 2013,58:87-94.
[79]   Chiriboga O, Rorrer G L. Phosphate addition strategies for enhancing the co-production of lipid and chitin nanofibers during fed-batch cultivation of the diatom Cyclotella sp. Algal Research, 2019,38:101403.
[80]   Jungandreas A, Wagner H, Wilhelm C. Simultaneous measurement of the silicon content and physiological parameters by FTIR spectroscopy in diatoms with siliceous cell walls. Plant and Cell Physiology, 2012,53(12):2153-2162.
doi: 10.1093/pcp/pcs144 pmid: 23104763
[81]   Werner D, Pirson A. Über reversible speicherung von kieselsäure in Cyclotella cryptica. Archiv Fär Mikrobiologie, 1967,57:43-50.
[82]   Brzezinski M A, Olson R J, Chisholm S W. Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series, 1990,67:83-96.
[83]   Milligan A J, Morel F M M. A proton buffering role for silica in diatoms. Science, 2002,297(5588):1848-1850.
doi: 10.1126/science.1074958 pmid: 12228711
[84]   Lombardi A T, Wangersky P J. Influence of phosphorus and silicon on lipia class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Marine Ecology Progress Series, 1991,77:39-47.
[85]   Zhao P P, Gu W H, Wu S C, et al. Silicon enhances the growth of Phaeodactylum tricornutum bohlin under green light and low temperature. Scientific Reports, 2014,4:3958.
doi: 10.1038/srep03958 pmid: 24492482
[86]   Ma J, Zhou B B, Tan Q G, et al. The roles of silicon in combating cadmium challenge in the marine diatom Phaeodactylum tricornutum. Journal of Hazardous Materials, 2020,389:121903.
pmid: 31879097
[87]   Villanova V, Fortunato A E, Singh D, et al. Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017,372(1728):20160404.
[88]   刘建国, 徐冉. 我国微藻资源开发30年蝉变之路. 生物学杂志, 2017,34(2):9-15.
[88]   Liu J G, Xu R. 30-year’s footprint and process of microalgal development in China. Journal of Biology, 2017,34(2):9-15.
[89]   刘建国. 红球藻虾青素资源开发历程与趋势展望. 海洋科学, 2020,44(8):130-146.
[89]   Liu J G. Development history and future prospects of culturing Haematococcus pluvialis for natural astaxanthin. Marine Sciences, 2020,44(8):130-146.
[90]   Schulze P S C, Guerra R, Pereira H, et al. Flashing LEDs for microalgal production. Trends in Biotechnology, 2017,35(11):1088-1101.
[91]   Zhang W Y, Wang F F, Gao B Y, et al. An integrated biorefinery process: stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Research, 2018,32:193-200.
[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[3] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[9] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[10] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[11] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[12] HE Lin-wei, LIU Zhang-min, FENG Yan, CUI Li. High Throughput Screening Method and Application for L-glutamate Specific Aminotransferase[J]. China Biotechnology, 2017, 37(8): 59-65.
[13] ZHANG Jing-jing, LIU Ke-dong, QIAN Kai, MIAO Ya-na, CAI Yan-fei, LI Cheng-yuan, CHEN Yun, JIN Jian. Construction of CHO Cell Tably Expressing GLP-1 Analogue and Study of Its Culture Process[J]. China Biotechnology, 2017, 37(5): 52-58.
[14] WANG Hui-yu, HE Tong-tong, LIU Jia-jia, FAN Hang, SONG Feng-lin, MEI Lin, TONG Yi-gang, HAN Xue-qing. The Investigation of RNA Viruses in Mosquitoes via High-Throughput Sequencing[J]. China Biotechnology, 2017, 37(11): 1-5.
[15] SUN Dan, XU Guo-xia, WANG Zi-qiang, WANG Yun-shan, ZHANG Li-ping, SU Zhi-guo. Screening and Application of Acid-resistant Strains of Propionibacterium acidipropionici[J]. China Biotechnology, 2017, 37(11): 83-88.