Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (4): 74-80    DOI: 10.13523/j.cb.2012028
    
The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase
WANG Yi-han,LI Hai-yan,XUE Yong-chang()
School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
Download: HTML   PDF(5974KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Halides are a kind of compounds which catalyzed by halogenase to the addition of halogen in secondary metabolites, have unique physiological and biochemical functions. Flavin-dependent halogenases have good regional selectivity and stability, and similar FAD binding sites with slight difference in substrates made them very important in industrial application. Therefore, the studies on its structure and synthetic pathway as well as random mutagenesis and directed modification of protein engineering are very important for its industry application. In this paper, the structural characteristics and engineering modification of flavin-dependent halogenases with high regional selectivity are reviewed, and it is of guiding significance for the application of engineering-modification flavin-dependent halides in industrial production.



Key wordsFlavin-dependent halogenase      High selectivity      Structural characteristics      Directional transformation     
Received: 17 December 2020      Published: 30 April 2021
ZTFLH:  Q819  
Corresponding Authors: Yong-chang XUE     E-mail: xueych@dlpu.edu.cn
Cite this article:

WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase. China Biotechnology, 2021, 41(4): 74-80.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2012028     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I4/74

Fig.1 Crystal structures of PrnA and PyrH
Fig.2 Protein structure assembly of VirX1
[1]   Gokel G W. Comprehensive Supramolecular Chemistry II. Amsterdam: Elsevier, 2017: 203-216.
[2]   Jukes T H. Some historical notes on chlortetracycline. Reviews of Infectious Diseases, 1985,7(5):702-707.
doi: 10.1093/clinids/7.5.702 pmid: 3903946
[3]   Moellering R C. Vancomycin: a 50-year reassessment. Clinical Infectious Diseases, 2006,42(Suppl 1):S3-S4.
[4]   Hammer P E, Hill D S, Lam S T, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 1997,63(6):2147-2154.
doi: 10.1128/AEM.63.6.2147-2154.1997 pmid: 9172332
[5]   Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angewandte Chemie International Edition, 2003,42(3):355-357.
doi: 10.1002/anie.200390115 pmid: 12548698
[6]   Gkotsi D S, Dhaliwal J, McLachlan M M, et al. Halogenases: powerful tools for biocatalysis (mechanisms applications and scope). Current Opinion in Chemical Biology, 2018,43:119-126.
doi: 10.1016/j.cbpa.2018.01.002 pmid: 29414530
[7]   Eustáquio A S, Gust B, Luft T, et al. Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. Chemistry & Biology, 2003,10(3):279-288.
pmid: 12670542
[8]   Mahoney K P, Smith D R M, Bogosyan E J A, et al. Access to high value natural and unnatural products through hyphenating chemical synthesis and biosynthesis. Synthesis, 2014,46(16):2122-2132.
[9]   Schmidt R, Stolle A, Ondruschka B. Aromatic substitution in ball mills: formation of aryl chlorides and bromides using potassium peroxomonosulfate and NaX. Green Chemistry, 2012,14(6):1673-1679.
[10]   Eissen M, Strudthoff M, Backhaus S, et al. Oxidation numbers, oxidants, and redox reactions: variants of the electrophilic bromination of alkenes and variants of the application of oxone. Journal of Chemical Education, 2011,88(3):284-291.
[11]   Eissen M, Lenoir D. Electrophilic bromination of alkenes: environmental, health and safety aspects of new alternative methods. Chemistry, 2008,14(32):9830-9841.
doi: 10.1002/chem.200800462 pmid: 18924183
[12]   Shaw P D, Hager L P. Chloroperoxidase: a component of the β-ketoadipate chlorinase system. Journal of Biological Chemistry, 1961,236(6):1626-1630.
[13]   O’Hagan D, Harper D B. Fluorine-containing natural products. Journal of Fluorine Chemistry, 1999,100(1-2):127-133.
[14]   Marais J S C. Monofluoroacetic acid, the toxic principle of “gifblaar” Dichapetalum cymosum (Hook) Engl. Verterinary Science and Animal Industry, 1944,20:67-73.
[15]   van Pée K H, Dong C J, Flecks S, et al. Biological halogenation has moved far beyond haloperoxidases. Advances in Applied Microbiology, 2006,59:127-157.
pmid: 16829258
[16]   Vaillancourt F H, Yin J, Walsh C T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII α-ketoglutarate- and O2-dependent halogenase. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(29):10111-10116.
[17]   Vaillancourt F H, Yeh E, Vosburg D A, et al. Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis. Nature, 2005,436(7054):1191-1194.
pmid: 16121186
[18]   Dairi T, Nakano T, Aisaka K, et al. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Bioscience, Biotechnology, and Biochemistry, 1995,59(6):1099-1106.
doi: 10.1271/bbb.59.1099 pmid: 7612997
[19]   唐晓敏, 徐俊. 微生物卤代酶研究进展. 中国抗生素杂志, 2008,33(11):641-644,677.
[19]   Tang X M, Xu J. Advance in research on the halogenase from microorganism. Chinese Journal of Antibiotics, 2008,33(11):641-644,677.
[20]   Minges H, Schnepel C, Böttcher D, et al. Targeted enzyme engineering unveiled unexpected patterns of halogenase stabilization. ChemCatChem, 2020,12(3):818-831.
[21]   Dong C J, Flecks S, Unversucht S, et al. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science, 2005,309(5744):2216-2219.
doi: 10.1126/science.1116510 pmid: 16195462
[22]   Pang A H, Garneau-Tsodikova S, Tsodikov O V. Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. Journal of Structural Biology, 2015,192(3):349-357.
pmid: 26416533
[23]   Buedenbender S, Rachid S, Müller R, et al. Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. Journal of Molecular Biology, 2009,385(2):520-530.
doi: 10.1016/j.jmb.2008.10.057 pmid: 19000696
[24]   Latham J, Brandenburger E, Shepherd S A, et al. Development of halogenase enzymes for use in synthesis. Chemical Reviews, 2018,118(1):232-269.
pmid: 28466644
[25]   Agarwal V, El Gamal A A, Yamanaka K, et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nature Chemical Biology, 2014,10(8):640-647.
pmid: 24974229
[26]   Agarwal V, Miles Z D, Winter J M, et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chemical Reviews, 2017,117(8):5619-5674.
doi: 10.1021/acs.chemrev.6b00571 pmid: 28106994
[27]   Podzelinska K, Latimer R, Bhattacharya A, et al. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Journal of Molecular Biology, 2010,397(1):316-331.
doi: 10.1016/j.jmb.2010.01.020 pmid: 20080101
[28]   Frese M, Guzowska P H, Voβ H, et al. Regioselective enzymatic halogenation of substituted tryptophan derivatives using the FAD-dependent halogenase RebH. ChemCatChem, 2014,6(5):1270-1276.
[29]   Yeh E, Garneau S, Walsh C T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(11):3960-3965.
[30]   van Pée K H. Biosynthesis of halogenated metabolites by bacteria. Annual Review of Microbiology, 1996,50:375-399.
doi: 10.1146/annurev.micro.50.1.375 pmid: 8905085
[31]   Karabencheva-Christova T G, Torras J, Mulholland A J, et al. Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase. Scientific Reports, 2017,7:17395.
pmid: 29234124
[32]   Ainsley J, Mulholland A J, Black G W, et al. Structural insights from molecular dynamics simulations of tryptophan 7-halogenase and tryptophan 5-halogenase. ACS Omega, 2018,3(5):4847-4859.
pmid: 31458701
[33]   Shepherd S A, Karthikeyan C, Latham J, et al. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes. Chemical Science, 2015,6(6):3454-3460.
pmid: 29511510
[34]   Gkotsi D S, Ludewig H, Sharma S V, et al. A marine viral halogenase that iodinates diverse substrates. Nature Chemistry, 2019,11(12):1091-1097.
pmid: 31611633
[35]   Weichold V, Milbredt D, van Pée K H. Specific enzymatic halogenation-from the discovery of halogenated enzymes to their applications in vitro and in vivo. Angewandte Chemie International Edition, 2016,55(22):6374-6389.
doi: 10.1002/anie.201509573 pmid: 27059664
[36]   Sullivan M B, Waterbury J B, Chisholm S W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 2003,424(6952):1047-1051.
doi: 10.1038/nature01929 pmid: 12944965
[37]   Neubauer P R, Widmann C, Wibberg D, et al. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One, 2018,13(5):e0196797.
doi: 10.1371/journal.pone.0196797 pmid: 29746521
[38]   Glenn W S, Nims E, O’Connor S E. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. Journal of the American Chemical Society, 2011,133(48):19346-19349.
pmid: 22050348
[39]   Facchini P J, Huber-Allanach K L, Tari L W. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry, 2000,54(2):121-138.
pmid: 10872203
[40]   Menon B R K, Brandenburger E, Sharif H H, et al. RadH: a versatile halogenase for integration into synthetic pathways. Angewandte Chemie International Edition, 2017,56(39):11841-11845.
pmid: 28722773
[41]   El Gamal A, Agarwal V, Diethelm S, et al. Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase-thioesterase enzyme pair. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(14):3797-3802.
[42]   Payne J T, Poor C B, Lewis J C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angewandte Chemie International Edition, 2015,54(14):4226-4230.
[43]   Eggeling L, Bott M. A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2015,99(8):3387-3394.
doi: 10.1007/s00253-015-6508-2 pmid: 25761623
[44]   Moritzer A C, Minges H, Prior T, et al. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry, 2019,294(7):2529-2542.
[45]   Andorfer M C, Grob J E, Hajdin C E, et al. Understanding flavin-dependent halogenase reactivity via substrate activity profiling. ACS Catalysis, 2017,7(3):1897-1904.
[46]   Durak L J, Payne J T, Lewis J C. Late-stage diversification of biologically active molecules via chemoenzymatic C-H functionalization. ACS Catalysis, 2016,6(3):1451-1454.
doi: 10.1021/acscatal.5b02558 pmid: 27274902
[47]   Atkinson H J, Morris J H, Ferrin T E, et al. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One, 2009,4(2):e4345.
doi: 10.1371/journal.pone.0004345 pmid: 19190775
[48]   Gerlt J A, Bouvier J T, Davidson D B, et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2015,1854(8):1019-1037.
[49]   Fejzagić A V, Gebauer J, Huwa N, et al. Halogenating enzymes for active agent synthesis: first steps are done and many have to follow. Molecules, 2019,24(21):4008.
[50]   Runguphan W, Qu X D, O’Connor S E. Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature, 2010,468(7322):461-464.
doi: 10.1038/nature09524 pmid: 21048708
[51]   Roy A D, Grüschow S, Cairns N, et al. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. Journal of the American Chemical Society, 2010,132(35):12243-12245.
pmid: 20712319
[1] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[2] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[3] LI Zhao-Feng, GU Zheng-Biao, DU Guo-Cheng, TUN Jing, CHEN Jian. Structural Characteristics and Catalytic Mechanisms of Cyclodextrin Glycosyltransferase[J]. China Biotechnology, 2010, 30(06): 144-150.