Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 51-56    DOI: 10.13523/j.cb.2006009
    
The Function of SIRT1 and Its Role in Regulating Follicular Development and Oocyte Maturation
JIA Zhen-wei()
College of Animal Science and Technology, Inner Mongolia University for the Nationalities, Tongliao 028043, China
Download: HTML   PDF(707KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Silent information regulator the factor 1 SIRT1(SIRT1), is NAD+ dependent enzymes with deacetylase activity, which participates in the regulation of many physiological functions of cells through substrate deacetylation, playing important roles in the process of glycolipid metabolism, aging, apoptosis, oxidative stress and so on. In addition, some studies have shown that SIRT1 is an important factor in the regulation of ovarian aging, follicular development and oocyte maturation. Moreover, the decrease of SIRT1 expression or the change of SIRT1 activity will lead to the aging of oocytes and the reduction of animal fertility. Therefore, to fully understand the function of SIRT1, and delay the aging of ovary and oocyte by regulating SIRT1 activity, thereby improving animal fertility, this paper describes the activation of SIRT1 and its biological processes involved in intracellular regulation, and discusses the main functions of SIRT1 from the perspective of energy metabolism, antioxidant stress and chromatin remodeling, highlights the regulatory roles of SIRT1 in animal follicular development and oocyte maturation.



Key wordsSIRT1      Energy metabalism      Follicular development      Oocyte maturation     
Received: 05 June 2020      Published: 10 November 2020
ZTFLH:  Q291  
Corresponding Authors: Zhen-wei JIA     E-mail: zhenwei1999@sina.com
Cite this article:

JIA Zhen-wei. The Function of SIRT1 and Its Role in Regulating Follicular Development and Oocyte Maturation. China Biotechnology, 2020, 40(10): 51-56.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006009     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/51

[1]   Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics, 2016,8:61.
doi: 10.1186/s13148-016-0224-3 pmid: 27226812
[2]   Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev, 2009,30(5):438-464.
doi: 10.1210/er.2008-0048 pmid: 19589950
[3]   Luo L L, Chen X C, Fu Y C, et al. The effects of caloric restriction and a high-fat diet on ovarian lifespan and the expression of SIRT1 and SIRT6 proteins in rats. Aging Clin Exp Res, 2012,24(2):125-133.
doi: 10.3275/7660 pmid: 21502801
[4]   Liu M J, Sun A G, Zhao S G, et al. Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertil Steril, 2018,109(5):900-907.
doi: 10.1016/j.fertnstert.2018.01.020 pmid: 29778389
[5]   Haigis M C, Guarente L P. Mammalian sirtuins-emerging roles in physiology, aging and calorie restriction. Genes Dev, 2008,20(21):2913-2921.
doi: 10.1101/gad.1467506 pmid: 17079682
[6]   Revollo J R, Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci, 2013,38(3):160-167.
doi: 10.1016/j.tibs.2012.12.004 pmid: 23394938
[7]   Yamakuchi M. MicroRNA regulation of SIRT1. Front Physiol, 2012,3:68.
doi: 10.3389/fphys.2012.00068 pmid: 22479251
[8]   Anderson R M, Shanmuganayagam D, Weindruch R. Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol, 2009,37(1):47-51
pmid: 19075044
[9]   Sebastián C, Satterstrom F K, Haigis M C, et al. From sirtuin biology to human diseases: an update. J Biol Chem, 2012, ( 51):42444-42452.
doi: 10.1074/jbc.R112.402768 pmid: 23086954
[10]   Ma S, Feng J, Zhang R, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxid Med Cell Longe, 2017,2017:4602715.
[11]   Valente S, Mellini P, Spallotta F, et al. 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J Med Chem, 2016,59(4):1471-1491.
doi: 10.1021/acs.jmedchem.5b01117 pmid: 26689352
[12]   Qiu L, Luo Y, Chen X. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated ampk/sirt1 signaling pathway in oa rats. Biomed Pharmacothe, 2018,103:1585-1591.
[13]   Kupis W, Pałyga J, Tomal E, Niewiadomska E. The role of sirtuins in cellular homeostasis. J Physiol Biochem, 2016,72(3):371-380.
doi: 10.1007/s13105-016-0492-6 pmid: 27154583
[14]   Cheng C F, Ku H C, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci, 2018,19(11):3447.
[15]   Gurd B J. Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab, 2011,36(5):589-597.
pmid: 21888529
[16]   Chang H C, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab, 2014,25(3):138-145.
pmid: 24388149
[17]   He W, Wang Y, Zhang M Z, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest, 2010,120(4):1056-1068.
doi: 10.1172/JCI41563 pmid: 20335659
[18]   Kao C L, Chen L K, Chang Y L, et al. Select search result to email or save 1 resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb, 2010,17(9):970-979.
doi: 10.5551/jat.4333 pmid: 20644332
[19]   Fan H, Yang H C, You L, et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury. Kidney Int, 2013,83(3):404-413.
doi: 10.1038/ki.2012.394 pmid: 23302720
[20]   Santos L, Escande C, Denicola A. Potential modulation of sirtuins by oxidative stress. Oxid Med Cell Longev, 2016,2016:9831825.
pmid: 26788256
[21]   Li Y, Dai D, Lu Q, et al. Sirt2 suppresses glioma cell growth through targeting NF-κB-miR-21 axis. Biochem Biophys Res Commun, 2013,441(3):661-667.
pmid: 24161395
[22]   Sablina A A, Budanov A V, Ilyinskaya G V, et al. The antioxidant function of the p53 tumor suppressor. Nat Med, 2005,11:1306-1313.
doi: 10.1038/nm1320 pmid: 16286925
[23]   Hori Y S, Kuno A, Hosoda R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One, 2013,8(9):e73875.
pmid: 24040102
[24]   Bu X, Wu D, Lu X, et al. Role of SIRT1/PGC-1α in mitochondrial oxidative stress in autistic spectrum disorder. Neuropsychiatr Dis Treat, 2017,13:1633-1645.
doi: 10.2147/NDT.S129081 pmid: 28694700
[25]   Ding Y W, Zhao G J, Li X L, et al. SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro. Int J Mol Med, 2016,37(4):1049-1058.
doi: 10.3892/ijmm.2016.2503 pmid: 26935021
[26]   Martinez-redondo P, Vaquero A. The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer, 2013,4(3-4):148-163.
doi: 10.1177/1947601913483767 pmid: 24020006
[27]   Lombardi P M, Cole K E, Dowling D P, et al. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol, 2011,21(6):735-743.
doi: 10.1016/j.sbi.2011.08.004 pmid: 21872466
[28]   Marmorstein R, Zhou M M. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol, 2014,6:a018762.
doi: 10.1101/cshperspect.a018762 pmid: 24984779
[29]   Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell, 2004,16(1):93-105.
doi: 10.1016/j.molcel.2004.08.031 pmid: 15469825
[30]   Mulligan P, Yang F, Di S et al. A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell, 2011,42(5):689-699.
doi: 10.1016/j.molcel.2011.04.020 pmid: 21596603
[31]   Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 2017,18(4):447-476.
doi: 10.1007/s10522-017-9685-9 pmid: 28258519
[32]   Lain S, Hollick J J, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell, 2008,13(5):454-463.
doi: 10.1016/j.ccr.2008.03.004 pmid: 18455128
[33]   Zhang X M, Li L, Xu J J, et al. Rapamycin preserves the follicle pool reserve and prolongs the ovarian lifespan of female rats via modulating mTOR activation and sirtuin expression. Gene, 2013,523(1):82-87.
doi: 10.1016/j.gene.2013.03.039 pmid: 23566837
[34]   Chen Z, Kang X, Wang L, et al. Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure. J Biol Chem, 2015,290:6387-6396.
doi: 10.1074/jbc.M114.605261 pmid: 25564616
[35]   Wang N, Luo L L, Xu J J, et al. Obesity accelerates ovarian follicle development and follicle loss in rats. Metabolism, 2014,63(1):94-103.
doi: 10.1016/j.metabol.2013.09.001 pmid: 24135502
[36]   Li L, Fu Y C, Xu J J, et al. Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling. Reprod Sci, 2015,22(1):60-67.
doi: 10.1177/1933719114542016 pmid: 25001019
[37]   Zhang J, Liu W, Sun X, et al. Inhibition of mTOR signaling pathway delays follicle formation in mice. J Cell Physiol, 2017,232(3):585-595.
doi: 10.1002/jcp.25456 pmid: 27301841
[38]   Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 2007,6(6):759-767.
doi: 10.1111/j.1474-9726.2007.00335.x pmid: 17877786
[39]   Selesniemi K, Lee H J, Muhlhauser A, et al. Prevention of maternal aging associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies. Proc Natl Acad Sci USA, 2011,108(30):12319-12324.
doi: 10.1073/pnas.1018793108 pmid: 21730149
[40]   Zhang T, Zhou Y, Li L, et al. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging. Aging (AlbanyNY), 2016,8:685-696.
[41]   Mok-lin E, Ascano M J R, Serganov A, et al. Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci Rep, 2018,8(1):588.
doi: 10.1038/s41598-017-18598-y pmid: 29330421
[42]   Dou X, Sun Y, Li J, et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell, 2017,16(4):825-836.
doi: 10.1111/acel.12617 pmid: 28544226
[43]   Zhou X L, Xu J J, Ni Y H, et al. SIRT1 activator (SRT1720) improves the follicle reserve and prolongs the ovarian lifespan of diet-induced obesity in female mice via activating SIRT1 and suppressing mTOR signaling. J Ovarian Res, 2014,7:97.
doi: 10.1186/s13048-014-0097-z pmid: 25330910
[44]   Furat R S, Kurnaz O S, Eraldemir C, et al. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J Ovarian Res, 2018,11(1):55.
doi: 10.1186/s13048-018-0427-7 pmid: 29958542
[45]   Cinco R, Digman M A, Gratton E, et al. Spatial characterization of bioenergetics and metabolism of primordial to preovulatory follicles in whole ex vivo murine ovary. Biol Reprod, 2016,95(6):129.
doi: 10.1095/biolreprod.116.142141 pmid: 27683265
[46]   Yuan Y, Cruzat V F, Newsholme P, et al. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev, 2016,155:10-21.
doi: 10.1016/j.mad.2016.02.003 pmid: 26923269
[47]   Morita Y, Wada-hiraike O, Yano T, et al. Resveratrol promotes expression of SIRT1 and StAR in rat ovarian granulosa cells: an implicative role of SIRT1 in the ovary. Reprod Biol Endocrinol, 2012,10:14.
doi: 10.1186/1477-7827-10-14 pmid: 22357324
[48]   Zhao F, Zhao W, Ren S, et al. Roles of SIRT1 in granulosa cell apoptosis during the process of follicular atresia in porcine ovary. Anim Reprod Sci, 2014,151(1-2):34-41.
doi: 10.1016/j.anireprosci.2014.10.002 pmid: 25455260
[49]   Gorczyca G, Wartalski K, Tabarowski Z, et al. Effects of vinclozolin exposure on the expression and activity of SIRT1 and SIRT6 in the porcine ovary. J Physiol Pharmacol, 2019,70(1). doi: 10.26402/jpp.
doi: 10.26402/jpp pmid: 31019120
[50]   Sirotkin A V, Dekanová P, Harrath A H, et al. Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res, 2014,358(2):627-632.
doi: 10.1007/s00441-014-1940-7 pmid: 25027053
[51]   Benayoun B A, Georges A B, L’h$\hat{o}$te D, et al. Transcription factor FOXL2 protects granulosa cells. Hum Mol Genet, 2011,20(9):1673-1686.
doi: 10.1093/hmg/ddr042 pmid: 21289058
[52]   Lodde V, Luciano A M, Franciosi F, et al. Chromatin remodelling enzymes mRNA and histone mRNA accumulation in oocytes. Results Probl Cell Differ, 2017,63:223-255.
doi: 10.1007/978-3-319-60855-6_11 pmid: 28779321
[53]   Di E G, Falone S, Vitti M, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum. Reprod, 2014,29(9):2006-2017.
doi: 10.1093/humrep/deu160 pmid: 24963165
[54]   Vaquero A, Scher M, Erdjument-bromage H, et al. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 2007,450(7168):440-444.
doi: 10.1038/nature06268 pmid: 18004385
[55]   Manosalva I, González A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology, 2010,74:1539-1547.
doi: 10.1016/j.theriogenology.2010.06.024 pmid: 20728928
[56]   Krauss V. Glimpses of evolution: heterochromatic histone H3K9 methyltransferases left its marks behind. Genetica, 2008,133(1):93-106.
doi: 10.1007/s10709-007-9184-z pmid: 17710556
[57]   Labrecque R, Lodde V, Dieci C, et al. Chromatin remodelling and histone mRNA accumulation in bovine germinal vesicle oocytes. Mol Reprod Dev, 2015,82(6):450-462.
doi: 10.1002/mrd.22494 pmid: 25940597
[58]   Chen J, Melton C, Suh N, et al. Genome-wide analysis of translation reveals a critical role for deleted in azoospermialike (Dazl) at the oocyte-to-zygote transition. Genes Dev, 2011, 25: 25(7):755-766.
doi: 10.1101/gad.2028911 pmid: 21460039
[59]   Riepsamen A, Wu L, Lau L, et al. Nicotinamide impairs entry into and exit from meiosis I in mouse oocytes. PLoS One, 2015,10:e0126194.
doi: 10.1371/journal.pone.0126194 pmid: 25938585
[60]   Zhang L, Ma R, Hu J, et al. Sirtuin inhibition adversely affects porcine oocyte meiosis. PLoS One, 2015,10:e0132941.
doi: 10.1371/journal.pone.0132941 pmid: 26176547
[61]   Liu M, Yin Y, Ye X, et al. Resveratrol protects against age-associated infertility in mice. Hum Reprod, 2013,28(3):707-717.
doi: 10.1093/humrep/des437 pmid: 23293221
[62]   Li Y, Wang J, Zhang Z, et al. Resveratrol compares with melatonin in improving in vitro porcine oocyte maturation under heat stress. J Anim Sci Biotechnol, 2016,7:33.
doi: 10.1186/s40104-016-0093-9 pmid: 27274843
[63]   Khan I, Kim S W, Lee K L, et al. Polydatin improves the developmental competence of bovine embryos in vitro via induction of sirtuin 1 (Sirt1). Reprod Fertil Dev, 2017,29:2011-2020.
doi: 10.1071/RD16302 pmid: 28193316
[64]   Niu Y J, Zhou W, Nie Z W, et al. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY), 2020,12(2):1256-1271.
[65]   Xu W, Li L, Sun J, et al. Putrescine delays postovulatory aging of mouse oocytes by upregulating PDK4 expression and improving mitochondrial activity. Aging (Albany NY), 2018,10(12):4093-4096.
[66]   Ma R, Zhang Y, Zhang L, et al. Sirt1 protects pig oocyte against in vitro aging. Anim Sci J, 2015,86(9):826-832.
doi: 10.1111/asj.12360 pmid: 25601632
[67]   Zhou J, Xue Z, He H N, et al. Resveratrol delays postovulatory aging of mouse oocytes through activating mitophagy. Aging (Albany NY), 2019,11(23):11504-11519.
[1] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[2] PENG Xiang-lei,WANG Ye,WANG Li-nan,SU Yan-bin,FU Yuan-hui,ZHENG Yan-peng,HE Jin-sheng. Single-Primer PCR for Site-Directed Mutagenesis[J]. China Biotechnology, 2020, 40(8): 19-23.
[3] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[4] ZHOU Qin,WANG Shuang,ZHANG Ting,LI Shan-gang,CHEN Yong-chang. T158M Single Base Editing of MECP2 Gene in Murine and Rhesus Monekey’s Embryos[J]. China Biotechnology, 2020, 40(6): 31-39.
[5] ZHANG Ying,KONG Xiang-xi,HOU Lin,WANG Shu-kun,YUAN Zeng-qiang. Role and Mechanism of Ozanimod (RPC1063) in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2020, 40(6): 10-19.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] TANG Min,WAN Qun,SUN Shi-lei,HU Jing,SUN Zi-jiu,FANG Yu-ting,ZHANG Yan. The Effects of Hsa-miR-5195-3p on the Proliferation, Migration and Invasion of Human Cervical Cancer SiHa Cells[J]. China Biotechnology, 2020, 40(4): 17-24.
[8] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[9] ZHOU Yan-xing,HAN Meng,LIU Na-nv,HUANG Wei-wei. Identification and Functional Study of G-quadruplexes in SENP1 Promoter[J]. China Biotechnology, 2020, 40(1-2): 92-101.
[10] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[11] ZHANG Yan-ting,GUO Yu-feng,YANG Zhi-hong,YANG Shao-qi. The Expression and Clinical Significance of CD177 + Neutrophils in Patients with Ulcerative Colitis[J]. China Biotechnology, 2019, 39(9): 58-61.
[12] RAN Long-rong,XUE Ning,WANG Jian-rong,DU Ying-jian,MAO Jin-ju,ZHOU Quan-you YANG Zai-lin. Prognostic Significance of Peripheral Blood Lymphocyte Subsets in Patients with Hematologic Malignancies[J]. China Biotechnology, 2019, 39(9): 50-57.
[13] YUAN Xiao-ying,WANG Ya-zhe,SHI Wei-hua,CHANG Yan,HAO Le,HE Ling-ling,SHI Hong-xia,HUANG Xiao-jun,LIU Yan-rong. Methodological Study on Flow Detection of PNH Clone and Its Clinical Screening Significance[J]. China Biotechnology, 2019, 39(9): 33-40.
[14] HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 2-10.
[15] Fu-lan GAO,Jia-long QI,Cong-yan SHU,Hang-hang XIE,Wei-wei HUANG,Cun-bao LIU,Xu YANG,Wen-jia SUN,Hong-mei BAI,Yan-bing MA. Efficient Secretory Expression of Optimized Mouse Interleukin-33 Gene in Mammalian Cells[J]. China Biotechnology, 2019, 39(3): 46-55.