Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 104-111    DOI: 10.13523/j.cb.2006052
    
Review of Patented Bacteriophage Treatment Technology for Drug-Resistant Bacteria Infection
ZHAO Jian-min(),ZHANG Si-yuan
Patent Examination Cooperation Tianjin Center of the Patent Office, CNIPA, Tianjin 300304, China
Download: HTML   PDF(5410KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The emergence and continuous evolution of drug-resistant bacteria, especially multi-drug resistant bacteria, poses a huge threat to human health. With the gradual loss of special effects of antibiotics, the scientific community and the medical community have turned their eyes to antibacterial natural organisms-bacteriophage, and in some studies have proved that bacteriophage can be used as a new weapon to replace antibiotics to treat drug-resistant bacterial infections. Through statistics and analysis of the world patent applications of phage therapy and derived lyase therapy, information on patent development trends, applicant distribution characteristics and main patent applicants was obtained, and the main patent technology routes and hotspots of bacteriophage and lyase therapy were analyzed in detail.



Key wordsBacteriophage      Lyase      Drug-resistant bacteria      Patent technology     
Received: 26 June 2020      Published: 10 November 2020
ZTFLH:  Q819  
Corresponding Authors: Jian-min ZHAO     E-mail: zhaojianmin_163@126.com
Cite this article:

ZHAO Jian-min,ZHANG Si-yuan. Review of Patented Bacteriophage Treatment Technology for Drug-Resistant Bacteria Infection. China Biotechnology, 2020, 40(10): 104-111.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2006052     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/104

Fig.1 Global development trend of patent application related phage therapy
Fig.2 Global applicant distribution of patent application related phage therapy
Fig.3 The major patent applicants on phage therapy field
人畜致病
菌噬菌体
水产致病
菌噬菌体
噬菌体
鸡尾酒
工程化
噬菌体
噬菌体
制备、使用
方法及装置
裂解酶
及制剂
治疗评价
标准
非细菌感染
疾病治疗
尹特荣生物科技株式会社 45 15 1 6
CJ第一制糖株式会社 26
INTRALYTIX生物技术公司 10 2 1
OPTIPHARM公司 28 2
江苏省农业科学院 10 3 2 3
麻省理工学院 8 1
Cytos生物技术公司 3 5
中国科学院深圳先进技术研究院 18 1
GANGAGEN生物技术公司 3 3
特拉维夫大学拉莫特有限公司 1 1 7
Table 1 Top ten applicants’ phage-related patent technology topics
Fig.4 Global applicant distribution of patent application related phage therapy of ESKAPE
裂解酶 噬菌体来源 靶细菌
US2003148268A1 C1 C1 A族链球菌
PlyG Gamma 炭疽芽孢杆菌
US2005208038A1 Pal Dp-1 肺炎链球菌
US2007025978 A1 PlyV12 Phi1 屎肠球菌、粪肠球菌
US2008221035 A1 PlyGBS NCTC 11261 B族链球菌
WO2010002959A2 ClyS 耐甲氧金黄色葡萄球菌
WO2013170015A1 PlySs2 S. suis phage 葡萄球菌属、链球菌属、肠球菌属、李斯特菌属
US2016312203A1 Phi15 鲍曼不动杆菌
CN108103050A LY-23 铜绿假单胞菌
CN108410840A Lysin-G78 vB-PaeM-G1 铜绿假单胞菌、肺炎克雷伯菌、大肠杆菌
Table 2 Patent application related lyase therapy
[1]   THACKER P D. Set a microbe to kill a microbe: drug resistance renews interest in phage therapy. JAMA, 2003,290(24):3183-3185.
doi: 10.1001/jama.290.24.3183 pmid: 14693857
[2]   安瑞. 噬菌体治疗的前世、今生与未来--对话微生物学界噬菌体专家. 科学通报, 2017,62(23):2577-2580.
[2]   AN R. Phage-based and future:dialogue bacteriophage expert in microbiology. Chin Sci Bulletin, 2017,62(23):2577-2580.
[3]   Andrzej G, Ryszard M, Małgorzata Ł, et al. Phage Therapy: what have we learned? Viruses, 2018,10(6):1-28.
[4]   Derek M L, Britt K, Henry C L. Phage therapy:an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther, 2017,8(3):162-173.
doi: 10.4292/wjgpt.v8.i3.162 pmid: 28828194
[5]   向盈盈, 宋飞, 杨向红, 等. 噬菌体疗法在口腔感染性疾病中的应用. 昆明医科大学学报, 2020,41(6):167-173.
[5]   Xiang Y Y, Song F, Yang X H, et al. Application of phage therapy in oral infectious diseases. Journal of Kunming Medical University, 2020,41(6):167-173.
[6]   Phil T. FDA green lights study of phage-based drug for resistantin fections.[2020-07-19]. http://www.pmlive.com/pharma_news/fda_green_lights_study_of_phage-based_drug_for_resistant_infections_1329139.
[7]   崔泽林, 郭晓奎, 李莉, 等. 噬菌体抗菌治疗安全性评估体系的建立. 微生物学报, 2018,58(11):2033-2039.
[7]   Cui Z L, Guo X K, Li L, et al. Establishment of safety assessment system of phage therapy. Acta Microbiologica Sinica, 2018,58(11):2033-2039.
[8]   Michele M, Lorenzo C. Robust approaches for the production of active ingredient and drug product for human phage therapy. Frontiers in Microbiology, 10:2289.
pmid: 31649636
[9]   Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature, 2019,575(7783):505-511.
doi: 10.1038/s41586-019-1742-x pmid: 31723265
[10]   王韧韬, 刘又宁. 噬菌体治疗细菌感染的临床应用与进展. 中华结核和呼吸杂志, 2020,43(6):539-543.
[10]   Wang R T, Liu Y N. The clinical application and progress of bacteriophages in the treatment of bacterial infections. Chin J Tuberc Respir Dis, 2020,43(6):539-543.
[11]   Piuri M, Jacobs W R, Hatfull G F. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS One, 2009,4(3):e4870.
doi: 10.1371/journal.pone.0004870 pmid: 19300517
[12]   褚国煜, 李晓宇, 王丽丽, 等. 噬菌体在多重耐药菌创伤性感染治疗中的作用. 国外医药(抗生素分册), 2019,40(5):441-444.
[12]   Chu G Y, Li X L, Wang L L, et al. The role of phage in the treatment of superbugular infections. World Notes on Antibiotics, 2019,40(5):441-444.
[13]   Zahra M, Abdollah G. Modifified phages:novel antimicrobial agents to combat infectious diseases. Biotechnology Advances, 2011,29(6):732-738.
doi: 10.1016/j.biotechadv.2011.06.003 pmid: 21689739
[14]   Hugo O, Carlos S, Joana A. Phage-derived peptidoglycan degrading enzymes: challenges and future prospects for in vivo therapy. Viruses, 2018,10(6):1-18.
[1] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[2] QIN Xu-ying,YANG Hong-jiang. Research Progress on Techniques for Separation, Purification of Bacteriophages[J]. China Biotechnology, 2020, 40(5): 78-83.
[3] HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase[J]. China Biotechnology, 2019, 39(8): 104-113.
[4] Qi ZHANG,Lin YAO,Yan-hua JIANG,Feng-ling LI,Yuan ZHANG,Dong-qin XU,Wen-jia ZHU,Ying-ying GUO,Lian-zhu WANG,Yu-xiu ZHAI. Development of Armored RNA Reference Material of Norovirus Based on Qbeta Bacteriophage[J]. China Biotechnology, 2018, 38(1): 42-50.
[5] WANG Du-qiang, SHEN Yun-long, LIAO Yuan-ping, LI De-bin, LIU Hong-jun, CHEN Shuai, LU Da-ru, ZHU Hua-xing. Development of Two Recombinant Enzymes: Cystathionine β-synthase and Cystathionine β-lyase Vital for Enzymatic Cycling Homocysteine Assay and Preliminary Characterization of the Corresponding Assay Kit[J]. China Biotechnology, 2017, 37(2): 81-87.
[6] LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis[J]. China Biotechnology, 2015, 35(6): 8-13.
[7] LI Heng, ZHU Si-ting, LIU Xu-mei, GONG Jin-song, JIANG Min, XU Zheng-hong, SHI Jin-song. Identification of an Alginate Lyase Producing Strain Halomonas sp. WF6 and Fermentation Optimization[J]. China Biotechnology, 2014, 34(9): 94-101.
[8] ZHOU Lan, WU Xiao-long, FU Yong-zhuo, ZHAO Xiang-yan, CHEN Yu-bao, TAN Zhong-yang. Occurrence and Analysis of Microsatellites and Compound Microsatellites in Caudovirales[J]. China Biotechnology, 2014, 34(11): 24-33.
[9] LI Qin, HE Lin, HUI Lin-ping, ZHAO Chen-yang, YU Tao. T4 Bacteriophage Displaying VEGF-binding Domains of KDR Inhibits the Proliferation and Invasion of Lung Cancer Cells[J]. China Biotechnology, 2013, 33(10): 14-20.
[10] QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation[J]. China Biotechnology, 2013, 33(1): 122-127.
[11] NIU, Wei-ning, YANG Meng-lin, CAO Shan-shan, XU Le, QIN Chuan-guang. Expression, Purification and Activity Assay of the Full-length and Truncated Human Cystathionine β-Synthase[J]. China Biotechnology, 2011, 31(12): 15-21.
[12] RAO Zhi-Meng, XU Mei-Juan, LIU Yuan-Xiu, ZHOU Chen, LA Chun-Yan, DOU Wen-Fang, ZHANG Xiao-Mei-Hu, HONG Yu, HU Zheng-Hong. Cloning, Expression and Analysis of the argH Gene Encoding Argininosuccinate  Lyase from Corynebacterium crenatum[J]. China Biotechnology, 2010, 30(09): 49-55.
[13] JIA Li-Liang, HOU Wei, WANG Bao-Hua, LIU Hua, GAO Wei, JIANG Qin, LI Xin, XU Yuan-Hua. Gene Cloning and Characters of Recombinant Methionine γ-Lyase from Trichomonas Vaginalis[J]. China Biotechnology, 2010, 30(05): 6-10.
[14] . Construction of the expression vector of virus-like particles containing FMDV IRES RNA[J]. China Biotechnology, 2007, 27(9): 31-35.
[15] . Cloning、expression and characterization of pyruvate formate-lyase in Escherichia coli[J]. China Biotechnology, 2006, 26(08): 28-31.