Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 82-90    DOI: 10.13523/j.cb.2001028
    
Advances in Detection and Typing of Diarrheal Escherichia coli with PCR
HUANG Zhao-hong1,HUANG Yun-hong1,HUANG Yan-mei2,LONG Zhong-er1,SHAN Shan1,**()
1 College of Life Sciences, Nanchang Key Laboratory of Microbial Resources Exploitation & Utilization from Poyang Lake Wetland, Jiangxi Normal University, Nanchang 330022, China
2 Jiangxi YeLi Medical Device Co. Ltd., Nanchang 330008, China
Download: HTML   PDF(504KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Diarrheal Escherichia coli is a kind of foodborne pathogens that can cause human diarrhea disease. It will be effectively to narrow the scope of the outbreak disease if the source of diarrheal Escherichia coli could be confirmed at the first time. The establishment of a simple and efficient method for the detection and typing of diarrheal Escherichia coli is the key for food safety and epidemic control. The methods based on molecular biology technology were constantly standardized and normalized in order to satisfy the need of rapid detection and typing of diarrheal Escherichia coli.The recent advances in detection and typing of diarrheal Escherichia coli by molecular biological technique was reviewed. The principle, advantages and disadvantages of multiplex polymerase chain reaction, quantitative real-time PCR and isothermal amplification of nucleic acid were introduced in detail. It will provide reference for the selection of traceability methods for pathogenic bacteria, and have the great significance for the prevention and control of epidemic spread caused by pathogenic bacteria.



Key wordsDiarrheal Escherichia coli      PCR technique      Detection      Typing     
Received: 12 January 2020      Published: 13 August 2020
ZTFLH:  Q7  
Corresponding Authors: Shan SHAN     E-mail: ncuskshanshan@163.com
Cite this article:

HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR. China Biotechnology, 2020, 40(7): 82-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001028     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/82

检测方法 优点 缺点
多重PCR法 核酸电泳技术 分型便利、耗时短、成本较低 条带分辨率低、核酸染料具有一定毒性
基因芯片技术 高通量、高特异性 设备要求高、检测成本高
自动化微流控芯片技术 具有集成化、高通量的检测特点 需要特殊的检测设备,对检测人员有一定的技术要求
变性高效液相色谱技术 自动化程度高、上样量大、灵敏度高、结果准确 需要制备复杂的色谱柱,提高了检测成本
RT-PCR法 荧光染料技术 经济实惠,可用作溶解曲线对病原菌进行检测 检测特异性低于荧光探针法
荧光探针技术 检测特异性高、结果准确 需合成探针,成本高
分子信标技术
CRISPR技术 具有较高的敏感度与特异性,准确率高 目前只有EHEC检测结果数据,检测范围小
等温扩增法 LAMP 设备依赖性小,检测结果肉眼可视,耗时短 还未建立多重等温扩增技术,无法实现高通量检测
IMSA
ICA
Table 1 Different techniques to detection and typing for DEC and their advantages or disadvantages
[1]   Brandal L T, Lindstedt B A, Aas L, et al. Octaplex PCR and fluorescence-based capillary electrophoresis for identification of human diarrheagenic Escherichia coli and Shigella spp. Journal of Microbiological Methods, 2007,68(2):331-341.
doi: 10.1016/j.mimet.2006.09.013 pmid: 17079041
[2]   苏涛, 毛永杨, 田金兰, 等. 食品安全标准中微生物检验指标的问题分析及建议. 食品安全质量检测学报, 2019,10(9):369-375.
[2]   Su T, Mao Y Y, Tian J L, et al. Analysis and suggestion on microbiological examination index in food safety standard. Food Safety and Quality Detection Technology, 2019,10(9):369-375.
[3]   伊廷存, 霍胜楠, 程祥龙, 等. 食源性致病菌溯源分型技术研究进展. 食品安全质量检测学报, 2019,10(6):5293-5298.
[3]   Yi T C, Huo S N, Chen X L, et al. Advances in traceability typing and identificationof foodborne pathogens. Food Safety and Quality Detection Technology, 2019,10(6):5293-5298.
[4]   May M L A, Tozer S, Day R, et al. Polymerase chain reaction for human parechovirus on blood samples improves detection of clinical infections in infants. Molecular Biology Reports, 2019,41(2):75-80.
[5]   Hashimoto M, Bando M, Kido J L, et al. Nucleic acid purification from dried blood spot on FTA Elute Card provides template for polymerase chain reaction for highly sensitive Plasmodium detection. Parasitology International, 2019,73. DOI: 10.1016/j.parint.2019.101941.
doi: 10.1016/j.parint.2019.101941 pmid: 31247308
[6]   Kerr Z, Hayter A, Khan Z, et al. Kallikrein-related peptidase mRNA expression in adenoid cystic carcinoma of salivary glands:a polymerase chain reaction study. Head and Neck Pathology, 2019.DOI: 10.1007/s12105-019-01076-4.
doi: 10.1007/s12105-019-01076-4 pmid: 32506378
[7]   Nunez-lillo G, Balladares C, Pavez C, et al. High-density genetic map and QTL analysis of soluble solid content, maturity date,and mealiness in peach using genotyping by sequencing. Scientia Horticulturae, 2019,257. DOI: 10.1016/j.scienta.2019.108734.
doi: 10.1016/j.scienta.2019.108734
[8]   Puno-sarmiento J, Gazal L, Medeiros L, et al. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers. International Journal of Environmental Research and Public Health, 2014,11(9):8924-8939.
doi: 10.3390/ijerph110908924 pmid: 25170683
[9]   Gibson D J, Nemeth N M, Beaufrère H, et al. Development and use of a triplex real-time PCR assay for detection of three DNA viruses in psittacine birds. Journal of Veterinary Diagnostic inVestigation, 2019,31(5):719-725.
doi: 10.1177/1040638719870218 pmid: 31423916
[10]   Kim M J, Kim H Y. A fast multiplex real-time PCR assay for simultaneous detection of pork,chicken, and beef in commercial processed meat products. LWT-Food Science and Technology, 2019,114. DOI: 10.1016/j.lwt.2019.108390.
doi: 10.1016/j.lwt.2019.108390
[11]   Xiao Y, Shen X, Zhao Q F, et al. Evaluation of real-time PCR coupled with multiplex probe melting curve analysis for pathogen detection in patients with suspected bloodstream infections. Frontiers in Cellular and Infection Microbiology, 2019,9. DOI: 10.3389/fcimb.2019.00361.
doi: 10.3389/fcimb.2019.00361 pmid: 32039040
[12]   Broujerdi S M, Ardakani M R, Rezatofighi S E. Characterization of diarrheagenic Escherichia coli strains associated with diarrhea in children,Khouzestan,Iran. Journal of Infection in Developing Countries, 2018,12(8):649-656.
doi: 10.3855/jidc.9538 pmid: 31958328
[13]   Vendruscolo J W, Waldrich T L, Saikawa G I A, et al. Novel multiplex PCR for detection of diarrheagenic Escherichia coli strains isolated from stool and water samples. Genetics and Molecular Research, 2017,16(3):16039760.
[14]   Zhang J, Xu Y, Ling X, et al. Identification of diarrheagenic Escherichia coli by a new multiplex PCR assay and capillary electrophoresis. Molecular and Cellular Probes, 2020,49. DOI: 10.1016/j.mcp.2019.101477.
doi: 10.1016/j.mcp.2019.101477 pmid: 31654732
[15]   Zhang Y, Zhu L, Zhang Y, et al. Simultaneous detection of three foodborne pathogenic bacteria in food samples by microchip capillary electrophoresis in combination with polymerase chain reaction. Journal of Chromatography A, 2018,1555:100-105. DOI: 10.1016/j.chroma.2018.04.058.
doi: 10.1016/j.chroma.2018.04.058 pmid: 29724645
[16]   Sautrey G, Duval R E, Chevalley A, et al. Capillary electrophoresis for fast detection of heterogeneous population in colistin-resistant Gram-negative bacteria. Electrophoresis, 2015,36(20):2630-2633.
doi: 10.1002/elps.201500064 pmid: 26101140
[17]   苏宁, 杨丽, 刘娟, 等. 基因芯片技术的国内应用研究进展. 生物技术通讯, 2016,27(2):289-292.
[17]   Su N, Yang L, Liu J, et al. Application research progress of gene chp technology in china. Letters in Biotechnology, 2016,27(2):289-292.
[18]   王乃福, 吴冬雪, 张霞 等. 致泻性大肠杆菌基因芯片检测方法的建立. 食品研究与开发, 2014,35(7):5-9.
[18]   Wang N F, Wu D X, Zhang X, et al. Development of diagnostic gene chip for detectionenterovirulent E.coli. Food Research and Development, 2014,35(7):5-9.
[19]   Asl Y A, Yamini Y, Seidi S. Development of a microfluidic-chip system for liquid-phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs. Talanta, 2016,160:592-599.DOI: 10.1016/j.talanta.2016.07.063.
doi: 10.1016/j.talanta.2016.07.063 pmid: 27591655
[20]   Yun Z, Zeng L, Huang W, et al. Detection and categorization of diarrheagenic Escherichia coli withauto-microfluidic thin-film chip method. Scientific Reports, 2018,8(1):12926.
doi: 10.1038/s41598-018-30765-3 pmid: 30150710
[21]   林飞燕, 陆春, 叶庭路, 等. 变性高效液相色谱法在微生物检测的应用进展. 现代科学仪器, 2009,(5):116-118. DOI: CNKI:SUN:XDYQ.0.2009-05-039.
doi: CNKI:SUN:XDYQ.0.2009-05-039
[21]   Lin F Y, Lu C, Ye T L, et al. Denaturing high performance liquid chromatography in detection of microorganism. Modern Scientific Instruments, 2009,(5):116-118. DOI: CNKI:SUN:XDYQ.0.2009-05-039.
doi: CNKI:SUN:XDYQ.0.2009-05-039
[22]   Fackenthal D L, Chen P X, Howe T, et al. Denaturing high-performance liquid chromatography for mutation detection and genotyping pharmacogenomics. Methods in Molecular Biology, 2013,1015:25-54. DOI: 10.1385/1-59259-957-5:073.
doi: 10.1385/1-59259-957-5:073 pmid: 23824847
[23]   徐君怡, 曹际娟, 郑秋月, 等. 变性高效液相色谱检测食品中致泻性大肠杆菌. 微生物学报, 2008, (11):1526-1531. DOI: 10.13343/j.cnki.wsxb.2008.11.015.
doi: 10.13343/j.cnki.wsxb.2008.11.015 pmid: 19149170
[23]   Xu J Y, Cao J J, Zhen Q Y, et al. Denaturing high-performance liquid chromatography for identifying four categories of diarrheagenic Escherichia coli. Acta Microbiologica Sinica, 2008, (11):1526-1531. DOI: 10.13343/j.cnki.wsxb.2008.11.015.
doi: 10.13343/j.cnki.wsxb.2008.11.015 pmid: 19149170
[24]   Xu Y G, Cui L C, Li S L, et al. Development and clinical validation of a multiplex polymerase chain reaction-denaturing high-performance liquid chromatography method for the identification of foodborne diarrheagenic Escherichia coli. Journal of Food Safety, 2012,32(1):6-12.
doi: 10.1111/jfs.2012.32.issue-1
[25]   施林祥, 李东辉. 实时荧光PCR研究新进展. 世界华人消化杂志, 2005,13(5):596-599.
[25]   Shi L X, Li D H. The development of real-time Q-PCR technology. World Chinese Journal of Digestology, 2005,13(5):596-599.
[26]   Abzazou T, Salvado H, Youngs Y C, et al. Characterization of nutrient-removing microbial communities in two full-scale WWTP systems using a new qPCR approach. The Science of the Total Environment, 2018,618:858-865. DOI: 10.1016/j.scitotenv.2017.08.241.
doi: 10.1016/j.scitotenv.2017.08.241 pmid: 29054664
[27]   Alves J, Hirooka E Y, Oliveira T C R M. Development of a multiplex real-time PCR assay with aninternal amplification control for the detection of Campylobacter spp.and Salmonella spp.in chicken meat. LWT-Food Science and Technology, 2016,72:175-181.DOI: 10.1016/j.lwt.2016.04.051.
doi: 10.1016/j.lwt.2016.04.051
[28]   邓文星, 张映. 实时荧光定量PCR技术综述. 生物技术通报, 2007,(5):93-95,106. DOI: 10.13560/j.cnki.biotech.bull.1985.2007.05.022.
doi: 10.13560/j.cnki.biotech.bull.1985.2007.05.022
[28]   Deng W X, Zhang Y. A review on real-time Q-PCR technology. Biotechnology Bulletin, 2007,(5):93-95,106. DOI: 10.13560/j.cnki.biotech.bull.1985.2007.05.022.
doi: 10.13560/j.cnki.biotech.bull.1985.2007.05.022
[29]   曾皎箭, 王蒋丽, 马合金, 等. 多重荧光PCR法与细菌培养法在食品中致泻性大肠埃希氏菌检测中的应用. 医学动物防制, 2018,34(3):103-105.
[29]   Zeng J J, Wang J L, MA H J, et al. Multiple fluorescence PCR and bacterial culture methods applied in the detection of diarrheased Escherichia coli. Journal of Medical Pest Control, 2018,34(3):103-105.
[30]   Riveros M, García W, García C, et al. Molecular and phenotypic characterization of diarrheagenic Escherichia coli strains isolated from bacteremic children. The American Journal of Tropical Medicineand Hygiene, 2017,97(5):1329-1336.
[31]   朱林英, 赵冰, 黄红, 等. 分子诊断技术结合传统分离方法在致泻性大肠杆菌检测中的运用. 中国卫生检验杂志, 2015,25(4):467-470.
[31]   Zhu L Y, Zhao B, Huang H, et al. Molecular diagnostic technigue combining with traditional isolation methods for detection of diarrhoeagenic Escherichia coli. Chinese Journal of Health Laboratory Technology, 2015,25(4):467-470.
[32]   张红宇, 孟祥晨, 姜博, 等. Taqman三重实时PCR快速检测原料乳中致泻性大肠埃希氏菌. 东北农业大学学报, 2010,41(10):108-115.
[32]   Zhang H Y, Meng X C, Jiang B, et al. Taqman triplex real-time PCR assays for rapid detection of diarrhea-genic Escherichia coli in raw milk. Journal of Northeast Agricultural University, 2010,41(10):108-115.
[33]   Tyagi S, Kramer F R. Molecular beacons:probes that fluoresce upon hybridization. Nature Biotechnology, 1996,14(3):303-308.
doi: 10.1038/nbt0396-303 pmid: 9630890
[34]   Chen Q, Shi X, Li Y, et al. Rapid genetic typing of diarrheagenic Escherichia coli using a two-tube modified molecular beacon based multiplex real-time PCR assay and its clinical application. Annals of Clinical Microbiology and Antimicrobials, 2014,13(1):30.
[35]   Mojica F J, Díez-villase?or C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea,bacteria and mitochondria. Molecular Microbiology, 2000,36(1):244-246.
doi: 10.1046/j.1365-2958.2000.01838.x pmid: 10760181
[36]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[37]   Delannoy S, Beutin L, Fach P. Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26: H11,O45: H2,O103: H2,O111: H8,O121: H19,O145: H28, and O157: H7 by real-time PCR. Journal of Clinical Microbiology, 2012,50(12):4035-4040.
doi: 10.1128/JCM.02097-12 pmid: 23035199
[38]   Noll L W, Chall R, Shridhar P B, et al. Validation and application of a real-time PCR assay based on the CRISPR array for serotype-specific detection and quantification of enterohemorrhagic Escherichia coli O157: H7 in cattle feces. Journal of Food Protection, 2018,81(7):1157-1164.
doi: 10.4315/0362-028X.JFP-18-049 pmid: 29939793
[39]   Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid,accurate,and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 2009,15(2):62-69.
doi: 10.1007/s10156-009-0669-9 pmid: 19396514
[40]   Ding X, Nie K, Shi L, et al. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay. Journal of Clinical Microbiology, 2014,52(6):1862-1870.
doi: 10.1128/JCM.03298-13 pmid: 24648558
[41]   Xu G, Hu L, Zhong H, et al. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Scientific Reports, 2012,2. DOI: 10.1038/srep00246.
doi: 10.1038/srep00246 pmid: 23256036
[42]   Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000,28(12):e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386
[43]   Ranjbar R, Erfanmanesh M, Afshar D, et al. Visual detection of enterohemorrhagic Escherichia coli O157:H7 using loop-mediated isothermal amplification. Electronic Physician, 2016,8(6):2576-2585.
doi: 10.19082/2576 pmid: 27504175
[44]   钟玉葵, 邓丽丝, 邓秋连, 等. 利用环介导等温扩增技术快速检测肠出血性大肠杆菌及其毒素的方法建立和评价. 中国医师杂志, 2018,20(6):826-831.
[44]   Zhong Y K, Deng L S, Deng Q L, et al. Development and evalution of loop-mediated isothermal amplification assay for the rapid detection of Escherichia coli and its microbial toxin. Journal of Chinese Physician, 2018,20(6):826-831.
[45]   马学军, 丁雄, 聂凯, 等. 新型等温多自配引发扩增技术(IMSA): 中国,CN104388581A. 2015-03-04[2020-01-12]. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?dbcode=SCPD&dbname=SCPD2015&filename=CN104388581A.
[45]   Ma X J, Ding X, Nie K, et al. Isothermal multiple-self-matching-initiated amplification(IMSA): China.CN104388581A. 2015-03-04[2020-01-12]. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?dbcode=SCPD&dbname=SCPD2015&filename=CN104388581A.
[46]   Liu W, Yuan C, Zhang L, et al. Establishment and application of isothermal multiple-self-matching-initiated amplification (IMSA) in detecting type II heat-labile enterotoxin of Escherichia coli. PLoS One, 2019,14(5):e0216272
doi: 10.1371/journal.pone.0216272 pmid: 31048928
[47]   尤其敏, 胡林, 徐高连, 等. 交叉引物扩增靶核酸序列的方法及用于扩增靶核酸序列的试剂盒及其应用: 中国, CN101638685. 2010-02-03[2020-01-12]. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?dbcode=SCPD&dbname=SCPD0809&filename=CN101638685.
[47]   You Q M, Hu L, Xu G L, et al. The nucleic acid amplification kit based on cross-priming isothermal amplification method and its application.China, CN101638685. 2010-02-03[2020-01-12]. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?dbcode=SCPD&dbname=SCPD0809&filename=CN101638685.
[48]   祁军, 詹曦菁, 李智慧 等. 交叉引物等温扩增技术在肠出血性大肠杆菌O157:H7快速检测中的应用. 口岸卫生控制, 2016,21(1):11-16.
[48]   Qi J, Zhan X J, Li Z H, et al. Rapid detection of enterohemorrhagic E.coli O157:H7 by using cross priming amplification technology. Port Health Control, 2016,21(1):11-16.
[49]   李凡, 许恒毅. 不对称PCR技术及其在食源性致病菌检测中应用的研究进展. 食品工业科技, 2017,38(4):379-383.
[49]   Li F, Xu H Y. Asymmetric polymerase chain reaction technology and its application in detection of foodborne pathogens. Science and Technology of Food Industry, 2017,38(4):379-383.
[50]   Deng H, Zhang X, Kumar A, et al. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem Commun, 2013,49(1):51-53.
doi: 10.1039/C2CC37037A
[51]   山珊, 黄昭鸿, 黄艳梅, 等. 不对称PCR技术结合免疫层析法快速检测产志贺毒素大肠埃希氏菌. [2020-04-14]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200330.1154.024.html. .
[51]   Shan S, Huang Z H, Huang Y M, et al. Rapid Detection of Shiga toxin-producing Escherichia coli by Immunochromatography based on Asymmetric Polymerase Chain Reaction. [2020-04-14]. http://kns.cnki.net/kcms/detail/11.2206.TS.20200330.1154.024.html.
[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[3] ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay[J]. China Biotechnology, 2021, 41(4): 47-54.
[4] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[5] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[6] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[7] ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology[J]. China Biotechnology, 2020, 40(4): 84-91.
[8] SUN Heng,WANG Jing,ZENG Ling-gao,WANG Jian-hua. Application of Peptide Nucleic Acid in Virus Detection and Therapy[J]. China Biotechnology, 2020, 40(1-2): 146-153.
[9] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[10] Si-nan QIN,Lu-hua TANG,Wen-hui GAO. Preparation of Enrofloxacin Molecular Imprinting Electro- chemical Sensor and Its Application to Rapid Detection of Foods[J]. China Biotechnology, 2019, 39(3): 65-74.
[11] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[12] Hong-yuan CHEN,Hong-yan CHEN,Chun QIAO,Jian-yong LI,Da-ru LU. The Establishment of a Novel Detection System for MYD88 L265P in Waldenström’s Macroglobulinemia[J]. China Biotechnology, 2018, 38(9): 35-40.
[13] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[14] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[15] WU Yi, ZHANG Li-ying, QUAN Chun-shan, ZHONG Mei-ling, WANG Lu-lu, WANG Guan-tian. Synthesis of the ComX Pheromone Precursor Peptide in Bacillus amyloliquefaciens Q-426 Quorum Sensing System[J]. China Biotechnology, 2017, 37(5): 38-44.