Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 84-92    DOI: 10.13523/j.cb.2001017
    
Advances in Lactic Acid Bacteria Gene Modification
FAN Bin1,2,CHEN Huan1,2,SONG Wan-ying1,2,CHEN Guang1,2,WANG Gang1,2,3,**()
1 Jilin Agricultural University, College of Life Science, Changchun 130118,China
2 Key Laboratory of Straw Biology and Utilization, the Ministry of Education,Jilin Agricultural University,Changchun 130118,China
3 Cofco Biochemical Co,LTD of Jilin,Changchun 130033,China
Download: HTML   PDF(1123KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lactic acid bacteria (LAB) is a Gram-positive, obligate anaerobic bacterium, and the main production of lactic acid. It was one of the most important industry strain which was used in food industry, pharmaceutical industry and chemicals industry. In recent years, with the continuous improvement of the industry application of LAB, studies were focused on physiological and biochemical characteristics, acid tolerance characteristic, metabolic pathways and mechanism of lactic acid production of lactic acid bacteria. So, it is necessary to establish a stable and efficient gene-modifying method for analyzing the functions of key genes and geneme network and adjusting the metabolic pathway. The paper reviews the recent progress and future prospects of LAB gene-modifying technologies.



Key wordsLactic acid bacteria      Gene modification      Homologous recombination      Loci specific      Linear DNA      CRISPR     
Received: 05 January 2020      Published: 23 June 2020
ZTFLH:  Q815  
Corresponding Authors: Gang WANG     E-mail: gangziccc@163.com
Cite this article:

FAN Bin,CHEN Huan,SONG Wan-ying,CHEN Guang,WANG Gang. Advances in Lactic Acid Bacteria Gene Modification. China Biotechnology, 2020, 40(6): 84-92.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001017     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/84

Fig.1 Single exchange homologous recombination
Fig.2 Double exchange homologous recombination for gene knockout
Fig.3 Double exchange homologous recombination for gene integration
Fig.4 Site-specific recombination
Fig.5 Cre/lox P gene editing based on lox66 and lox71
Fig 6 Single and double chain recombination
Fig 7 CRISPER/Cas9 gene editing
[1]   Bosma E F, Forster J, Nielsen A T . Lactobacilli and pediococci as versatile cell factories-evaluation of strain properties and genetic tools. Biotechnology Advances, 2017,35(4):419-442.
[2]   凌代文, 冬秀珠 . 乳酸菌分类鉴定及实验方法. 北京: 中国轻工业出版社, 1999:1-4, 6-16, 45-47.
[2]   Ling D W, Dong X Z. Classification and identification of lactic acid bacteria and experimental methods. Beijing: China Light Industry Press, 1999:1-4, 6-16, 45-47.
[3]   Bourdichon F, Casaregola S, Farrokh C , et al. Food fermentations: microorganisms with technological beneficial use. International Journal of Food Microbiology, 2012,154(3):87-97.
doi: 10.1016/j.ijfoodmicro.2011.12.030 pmid: 22257932
[4]   Solem C, Dehli T, Jensen P R . Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013,79(8):2512-2518.
[5]   Kyla-Nikkila K, Hujanen M, Leisola M , et al. Metabolic engineering of Lactobacillus helveticus CNRZ32 for production of pure L- (+)-lactic acid. Applied and Environmental Microbiology, 2000,66(9):3835-3841.
pmid: 10966398
[6]   Sybesma W, Starrenburg M, Kleerebezem M , et al. Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental Microbiology, 2003,69(6):3069-3076.
doi: 10.1128/aem.69.6.3069-3076.2003 pmid: 12788700
[7]   Karimi S, Ahl D, Evelina Vågesjö , et al. In Vivo and In Vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent mCherry for assessing plasmid persistence. PLoS One, 2016,11(3):1-22.
[8]   Kong W, Kapuganti V S, Lu T . A gene network engineering platform for lactic acid bacteria. Nucleic Acids Research, 2012,44(4):1-10.
[9]   Wang C, Cui Y, Qu X . Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology, 2017,200(2), 195-201.
pmid: 29075866
[10]   Hama S, Mizuno S, Kihara M , et al. Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. Bioresource Technology, 2015,187:167-172.
pmid: 25846187
[11]   Okano K, Zhang Q, Shinkawa S , et al. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Applied and Environmental Microbiology, 2009,75(2):462-467.
[12]   Antonio M B, José Luis R B, Rufino J D . Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. International Journal of Food Microbiology, 2009,130(1):35-42.
doi: 10.1016/j.ijfoodmicro.2008.12.033 pmid: 19185943
[13]   Fu R Y, Bongers R S, Swam I I V , et al. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host. Metabolic Engineering, 2006,8(6):662-671.
[14]   Qiu Z, Gao Q, Bao J . Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic L-lactic acid fermentation. Bioresource Technology, 2017,249:9-15.
pmid: 29035728
[15]   Radecke S, Radecke F, Cathomen T , et al. Zinc-finger nuclease-induced gene repair with oligodeoxynucleotides: wanted and unwanted target locus modifications. Molecular Therapy, 2010,18(4):743-753.
doi: 10.1038/mt.2009.304 pmid: 20068556
[16]   Kusano H, Onodera H, Kihira M , et al. A simple gateway-assisted construction system of TALEN genes for plant genome editing. Scientific Reports, 2016,6:30234.
[17]   Chang Y, Su T, Qi Q , et al. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Microbial Cell Factories, 2016,15(1):195.
[18]   Herring C D, Glasner J D, Blattner F R . Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene, 2003,311(1):153-163.
[19]   Lee J W, In J H, Park J B , et al. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. Journal of Biotechnology, 2017,241:81-86.
pmid: 27867078
[20]   Goh Y J, Barrangou R . Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Current Opinion in Biotechnology, 2019,56:163-171.
[21]   Hidalgo-Cantabrana C, O’Flaherty, Sarah, Barrangou R . CRISPR-based engineering of next-generation lactic acid bacteria. Current Opinion in Microbiology, 2017,37:79-87.
[22]   Singleton M R, Dillingham M, Gaudier M , et al. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature, 2004,432(7014):187-193.
[23]   Lilley D M J . Structures of helical junctions in nucleic acids. Quarterly Reviews of Biophysics, 2000,33(2):109-159.
doi: 10.1017/s0033583500003590 pmid: 11131562
[24]   Leenhouts K J, Kok J, Venema G . Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 1989,55(2):394-400.
[25]   Leloup L, Ehrlich S D, Zagorec M , et al. Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Applied and Environmental Microbiology, 1997,63(6):2117-23.
[26]   Lokman B C, Heerikhuisen M, Leer R J , et al. Regulation of expression of the Lactobacillus pentosus xylAB operon. Journal of Bacteriology, 1997,179(17):5391-5397.
doi: 10.1128/jb.179.17.5391-5397.1997 pmid: 9286992
[27]   Nierop Groot. Masja N, Nierop Groot, Klaassens Eline, De Vos Willem M . Genome-based in silico detection of putative manganese transport systems in Lactobacillus plantarum and their genetic analysis. Microbiology, 2005,151(4):1229-1238.
[28]   Fang F . Genetic tools for investigating the biology of commensal lactobacilli. Frontiers in Bioscience, 2009,14(1):3111-3127.
[29]   Law J, Buist G, Haandrikman A , et al. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. Journal of Bacteriology, 1995,177(24):7011-7018.
[30]   Maguin E, Duwat P, Hege T , et al. New thermosensitive plasmid for gram-positive bacteria. Journal of Bacteriology, 1992,174(17):5633-5638.
doi: 10.1128/jb.174.17.5633-5638.1992 pmid: 1324906
[31]   Biswas I, Gruss A, Ehrlich S D , et al. High-efficiency gene inactivation and replacement system for gram-positive bacteria. Journal of Bacteriology, 1993,175(11):3628-3635.
[32]   Neu T, Henrich B . New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Applied and Environmental Microbiology, 2003,69(3):1377-1382.
doi: 10.1128/aem.69.3.1377-1382.2003 pmid: 12620819
[33]   Russell W M, Klaenhammer T R . Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Applied and Environmental Microbiology, 2001,67(9):4361-4364.
[34]   Antonio M B, José Luis R B, Rufino J D . Knockout of three-component regulatory systems reveals that the apparently constitutive plantaricin-production phenotype shown by Lactobacillus plantarum on solid medium is regulated via quorum sensing. International Journal of Food Microbiology, 2009,130(1):35-42.
[35]   Yi X, Zhang P, Sun J , et al. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock. Journal of Biotechnology, 2015,217:112-121.
[36]   王刚, 肖雨, 李义 , 等. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响. 中国生物工程杂志, 2019,39(8):66-73.
[36]   Wang G, Xiao Y, Li Y , et al. Effect of ldhL gene knock out mutant on Lactobacillus delbrueckii subsp.blgaricus producing L-lactic acid. China Biotechnology, 2019,39(8):66-73.
[37]   张明磊, 武丽达, 王希庆 , 等. 基于pGhost4系统保加利亚乳杆菌乙酸激酶敲除载体的构建. 吉林农业大学学报, 2016,38(5):527-532.
[37]   Zhang M L, Wu L D, Wang X Q , et al. Construction of acetate kinase knockout carrier on Lactobacillus bulgaria with pGhost4 system. Journal of Jilin Agricultural University. 2016,38(5):527-532.
[38]   冯浩, 余凤云, 单凤娟 , 等. 构建食品级表达纳豆激酶的乳酸乳球菌重组菌株. 食品科学, 2012,33(21):208-212.
[38]   Feng H, Yu F Y, Shan F J , et al. Construction of a strain of recombinant Lactococcus lactis expressing food-grade nattokinase. Food Science, 2012,33(21):208-212.
[39]   Guo F, Gopaul D N, Duyne G D V . Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature, 1997,389(6646):40-46.
pmid: 9288963
[40]   Massad G, Mobley H L T . Mechanisms and improvement of acid resistance in lactic acid bacteria. Gene, 1994,150(1):100-104.
[41]   Olivares E C. Hollis R P, Calos M P . Phage R4 integrase mediates site-specific integration in human cells. Gene, 2001,278(1):167-176.
[42]   Kuhlman T E, Cox E C . Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010,38(6), 1-10.
[43]   Albert H, Dale E C, Lee E , et al. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. The Plant Journal, 1995,7(4):649-659.
pmid: 7742860
[44]   Kopertekh L, G. Jüttner, Schiemann J . Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase. Plant Science (Oxford), 2004,166(2):485-492.
[45]   Langer S J, Paiman G A, Marshall B , et al. A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Research, 2002,30(14):3067-3077.
pmid: 12136089
[46]   Campo N Daveran-Mingot M L Leenhouts K , et al. Cre-loxP recombination system for large genome rearrangements in Lactococcus lactis. Applied and Environmental Microbiology, 2002,68(5):2359-2367.
doi: 10.1128/aem.68.5.2359-2367.2002 pmid: 11976109
[47]   Lambert J M, Bongers R S, Kleerebezem M . Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Applied and Environmental Microbiology, 2007,73(4):1126-1135.
doi: 10.1128/AEM.01473-06 pmid: 17142375
[48]   Zhu Duolong, Zhao Kai, Xu Haijin , et al. Construction of thyA deficient Lactococcus lactis using the Cre-loxP recombination system. Annals of Microbiology, 2015,65(3):1659-1665.
[49]   Xin Y, Guo T, Mu Y , et al, Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microbial Cell Factories, 2018,17(1):1-11.
[50]   Sharan S K, Thomason L C, Kuznetsov S G , et al. Recombineering: a homologous recombination-based method of genetic engineering. Nature Protocols, 2009,4(2):206-223.
[51]   Gupta R, Shuman S, Glickman M S . RecF and RecR play critical roles in the homologous recombination and single strand annealing pathways of DNA repair in mycobacteria. Journal of Bacteriology, 2015,197(19):3121-3132.
doi: 10.1128/JB.00290-15 pmid: 26195593
[52]   Liao S W, Lee J J, Ptak C P , et al. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis. Archives of Microbiology, 2018,200(2):219-225.
[53]   Thomason L C, Costantino N, Court D L . Examining a DNA replication requirement for bacteriophage λ Red- and Rac prophage recET-promoted recombination in Escherichia coli. mBio, 2016,7(5):1-10.
[54]   Murphy K C . Phage recombinases and their applications. Advances in Virus Research, 2012,83(83):367-414.
[55]   Poteete A R . What makes the bacteriophage Lambda Red system useful for genetic engineering: molecular mechanism and biological function. FEMS Microbiology Letters, 2001,201(1):9-14.
doi: 10.1111/j.1574-6968.2001.tb10725.x pmid: 11445160
[56]   Pentao Liu, Nancy A. Jenkins, and Neal G . Copeland. Highly efficient recombineering-based method for generating conditional knockout mutations. Genome Research, 2003,13(3):476-484.
[57]   Noll S, Hampp G, Bausbacher H , et al. Site-directed mutagenesis of multi-copy-number plasmids: Red/ET recombination and unique restriction site elimination. Bio-Techniques, 2009,46(7):527-533.
[58]   Yang P, Wang J, Qi Q . Prophage recombinases mediated genome engineering in Lactobacillus plantarum. Microbial Cell Factories, 2015,14(1):1-11.
[59]   Datta S, Costantino N, Zhou X , et al. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Sciences, 2008,105(5):1626-1631.
[60]   Van Pijkeren J P, Neoh K M, Sirias D , et al. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered, 2012,3(4):209-217.
pmid: 22750793
[61]   Van Pijkeren J P, Britton R A . High efficiency recombineering in lactic acid bacteria. Nucleic Acids Research, 2012,40(10):1-13.
[62]   Shan Q, Wang Y, Li J , et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):686-688.
pmid: 23929338
[63]   Hwang W Y, Fu Y F, Reyon D , et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013,31(3):227-229.
pmid: 23360964
[64]   Cobb R E, Wang Y, Zhao H . High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2015,4(6):723-728.
doi: 10.1021/sb500351f pmid: 25458909
[65]   Xiangjun H, Chunlai T, Feng W , et al. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016,44(9):1-14.
[66]   Garneau J E, Dupuis, M, Villion M, , et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
pmid: 21048762
[67]   Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157(6):1262-1278.
doi: 10.1016/j.cell.2014.05.010 pmid: 24906146
[68]   Nishimasu H, Ran F A, Hsu P D , et al. Crystal structure of Cas9 in complex with Guide RNA and target DNA. Cell, 2014,156(5):935-949.
[69]   Sternberg S H, Redding S, Jinek M , et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014,507(7490):62-67.
doi: 10.1038/nature13011 pmid: 24476820
[70]   Simon van D E, Jennelle K. J, Michiel K . Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Applied and Environmental Microbiology, 2018,84(8):1-11.
[71]   Horii, Takuro . Genome engineering using the CRISPR/Cas system. World Journal of Medical Genetics, 2014,4(3):69-76.
[72]   Sanozky-Dawes R, Selle K, O’Flaherty S , et al. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. Microbiology, 2015,161(9). 1752-1761.
[73]   Jee-Hwan O, Van Pijkeren J P . CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Research, 2014,42(17):1-11.
[74]   Jang Y J, Seo S O, Kim S A , et al. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system. Journal of Biotechnology, 2017, ( 251):151-55.
[75]   Song X, Huang H, Xiong Z , et al. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei . Applied and Environmental Microbiology, 2017,83(22):1-13.
[76]   Crawley A B, Henriksen E D, Emily S , et al. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Scientific Reports, 2018,8(1):1-12.
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[5] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[8] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[9] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[10] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[11] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[12] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[13] HE Xiu-juan,HU Feng-zhi,LIU Qiu-li,LIU Yu-ping,ZHU Ling,ZHENG Wen-yun. CRISPR / Cas9 Gene Editing of QSOX1 in Breast Cancer Cells and Its Effect on the Proliferation and Invasion[J]. China Biotechnology, 2020, 40(11): 1-9.
[14] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[15] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.