Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 31-39    DOI: 10.13523/j.cb.2001063
    
T158M Single Base Editing of MECP2 Gene in Murine and Rhesus Monekey’s Embryos
ZHOU Qin1,2,WANG Shuang1,2,ZHANG Ting1,2,LI Shan-gang1,2,CHEN Yong-chang1,2,***()
1 College of Life Science and Technology, Institute of Primate Translational,Kunming University of Science and Technology,Kunming 650500,China
2 Yunnan Key Laboratory of Primate Biomedical Research,Kunming 650500,China
Download: HTML   PDF(2263KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: The T158M site of MECP2 gene was modified by using single-base editing technique to obtain single site-directed mutant rodent and non-human primate embryos,which lays a foundation for the establishment of an animal disease model simulating Rett syndrome in clinical practice.Methods: Three pairs of T158M-sgRNA plasmids were constructed using single-base editing technique,and co-transfected 293T cells with BE system(BE3 or BE4max)plasmids to screen highly-efficient sgRNAs.In vitro transcribed mRNAs were injected at different concentrations by microinjection to ICR mice and macaque fertilized eggs to measure the embryo development rate and editing efficiency of mouse and macaque and to evaluate the working efficiency of BE3 and BE4max and optimal concentration combination.Results: The mouse embryo development rate and editing efficiency are best when the concentration ratio of BE4max(ng/μl)∶sgRNA(ng/μl)on mouse embryos is 100∶50,and this concentration combination also shows effective editing efficiency on rhesus monkey embryo.Conclusion: The transition of C→T at position T158M of the MECP2 gene were successfully achieved in mouse and macaques embryos,establishing a stable embryo editing system for the later establishment of a T158M mutant RTT animal model.



Key wordsRett syndrome      Single base editing      Non-human primate      Editing efficiency     
Received: 26 January 2020      Published: 23 June 2020
ZTFLH:  Q291  
Corresponding Authors: Yong-chang CHEN     E-mail: chenyc@lpbr.cn
Cite this article:

ZHOU Qin,WANG Shuang,ZHANG Ting,LI Shan-gang,CHEN Yong-chang. T158M Single Base Editing of MECP2 Gene in Murine and Rhesus Monekey’s Embryos. China Biotechnology, 2020, 40(6): 31-39.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001063     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/31

Target ID Primer sequences (5'-3')
Target 1 Forward:ACCGGACTTCACGGTAACTGGGAGAGGG
Reward:AAACCCCTCTCCCAGTTACCGTGAAGTC
Target 2 Forward:ACCGGACTTCACGGTAACTGGGAGAGG
Reward:AAACCCTCTCCCAGTTACCGTGAAGTC
Target 3 Forward:ACCGGACCGTGAAGTCAAAATCATTAGG
Reward:AAACCCTAATGATTTTGACTTCACGGTC
Table 1 Oligo DNA designed for 158 sites
引物信息 引物序列(5'-3')
Homo-MECP2-F CATCCGCTCTGCCCTATCTC
Homo-MECP2-R GGCCTCGGCGGCAGCGGCTG
Mulatta-MECP2-F TCTGACATTGCTATGGAGAG
Mulatta-MECP2-R CATAAGGAGAAGAGACAACAG
Mouse-Mecp2-F TTCTGAGCAAGCTGTAACA
Mouse-Mecp2-R ACCTGAACACCTTCTGATG
Table 2 Primers for exon 3 of MECP2/Mecp2 gene in human,rhesus monkeyand mouse
Fig.1 Construction of sgRNA plasmid (a)Oligonucleotides of sgRNA (b)Sequencing result
Fig.2 sgRNA efficiency identification on 293T cells (a) Fluorescence map of transfected cells in experimental group (b) Fluorescence of transfected cells in control group (c) Sequencing verification
组合(mRNA) 组合浓度/(ng/μl) 编辑胚胎数 胚胎发育情况(8d)/囊胚率
sgRNA Target 1 20 10 Blastocyst(6);8-cell(2)2-cell(2)/60%
sgRNA Target 1 50 10 Blastocyst(5);4-cell(2)2-cell(3)/50%
BE3 20 10 Blastocyst(1);16-cell(2); 8-cell(3);2-cell(4)/10%
BE4max 20 10 Blastocyst(4);16-cell(3); 8-cell(3)/40%
Control 5 Blastocyst(5)/100%
Table 3 Statistics on the development of in vitro transcription of mRNAs injected into cynomolgus monkey embryos
组合(mRNA) 组合浓度/(ng/μl) 编辑胚胎数 胚胎发育情况(8d)/囊胚率
BE3∶sgRNA Target 1 20∶10 12 8-cell(1);4-cell(5);2-cell(4);death(2)/0%
BE4max∶sgRNA Target 1 20∶10 12 Blastocyst(2);4-cell(6);death(4)/16.7%
BE4max∶sgRNA Target 1 20∶10 11 Blastocyst(1);4-cell(4);3-cell(1);2-cell(5)/9%
BE4max∶sgRNA Target 1 20∶20 12 4-cell(5);2-cell(7)/0%
Table 4 Developmental statistics of BE3 and BE4max in editing embryos
注射浓度/(ng/μl) 注射卵数/(囊胚发育情况) 胚胎突变个数(突变率)
第一组 20∶10 15/(9) 2(20%,80%)
50∶20 15/(8) 2(100%,5%)
100∶50 15/(5) 3(100%,60%,20%)
200∶100 15/(2) 2(100%,70%)
第二组 20:10 10/(8) 0
50∶20 12/(5) 1(70%)
100∶50 12/(5) 3(100%,80%,20%)
200∶100 10/(1) 2(90%,60%)
第三组 20∶10 30/(19) 3(20%,15%,15%)
50∶20 30/(11) 4(60%,20%,10%,5%)
100∶50 30/(9) 6(100%,100%,50%,40%,30%,20%)
200∶100 30/(4) 5(100%,100%,100%,60%,30%)
Table 5 BE4max system edits mouse embryo statistics on development and mutation
Fig.3 Mouse embryo validation (a) Flowchart of editing embryos and validating efficiency of BE System (b) Mouse embryo development(white arrows are embryos that have developed into blastocysts (c)T7 digestion verification (d)BE system edits the mutation type statistics of T158M locus of MECP2
Fig.4 Rhesus monkey embryo detection (a) Statistics of embryo blastocyst rates in the KO and Control groups (b) BE edited embryo wild type、 mosaic、homozygous mutation statistical results (c) Embryo development (d) Sanger sequencing analysis
[1]   Breakthrough of the year. The runners-up. Science, 2012,338(6114):1525-1532.
[2]   Listed N A . Genetic microsurgery for the masses. Science, 2013,34(6165):1434-1435.
[3]   John T . Making the cut. Science News, 2015,350(6267):1456-1457.
[4]   Barrangou, Rodolphe . RNA-mediated programmable DNA cleavage. Nature Biotechnology, 2012,30(9):836-838.
[5]   Cox D B T, Platt R J, Zhang F . Therapeutic genome editing:prospects and challenges. Nature Medicine, 2015,21(2):121-131.
[6]   Komor A C, Kim Y B, Packer M S , et al. Programmable editing of a target base kkkin genomic DNA without double-stranded DNA cleavage. Nature, 2016.
[7]   Yu W, Xiaohui Z, Dali L . The “new favorite” of gene editing technology-single base editors. Hereditas(Beijing), 2017,39(12).
[8]   Kim K, Ryu S M, Kim S T , et al. Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 2017.
doi: 10.1038/s41587-020-0484-5 pmid: 32518402
[9]   Liu Z, Chen M, Chen S , et al. Highly efficient RNA-guided base editing in rabbit. Nat Commun, 2018,9(1):2717.
[10]   Zhi quan, Liu, Mao , et al. Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019.
[11]   Liu Z, Shan H, Chen S , et al. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. Faseb J, 2019,33(8):9210-9219.
[12]   Chahrour M, Zoghbi H . The story of Rett syndrome: from clinic to neurobiology. Neuron, 2007,56(3):422-437.
pmid: 17988628
[13]   Laurvick C L, Klerk N D, Bower C , et al. Rett syndrome in Australia: a review of the epidemiology. Journal of Pediatrics, 2006,148(3):0-352.
[14]   Neul J L, Fang P, Barrish J , et al. Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome. Neurology, 2008,70(16):1313-1321.
doi: 10.1212/01.wnl.0000291011.54508.aa pmid: 18337588
[15]   Glaze D G, Percy A K, Skinner S , et al. Epilepsy and the natural history of Rett syndrome. Neurology, 2010,74(11):909-12.
pmid: 20231667
[16]   Guy J, Hendrich B, Holmes M , et al. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 2001,27(3):322.
pmid: 11242117
[17]   Chen Y, Zheng Y, Kang Y , et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Human Molecular Genetics, 2015: ddv120.
[18]   Niu Y, Shen B, Cui Y , et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014,156(4):836-843.
[19]   Chen Y, Yu J, Niu Y , et al. Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell, 2017,169(3):945-955.
[20]   Puping Liang, Hongwei Sun, Ying Sun , et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017,8(8).
[21]   Liang P, Ding C, Sun H , et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein & Cell, 2017,8(11).
doi: 10.1007/s13238-017-0381-y pmid: 28224292
[1] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[2] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.