Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (5): 105-116    DOI: 10.13523/j.cb.1912023
    
Recent Progress on Fermentation and Antibacterial Applications of Surfactin
MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei()
Nanjing University of Science and Technology, Nanjing 210094,China
Download: HTML   PDF(914KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Surfactin is a kind of cyclic lipopeptide biosurfactant mainly synthesized by many Bacillus subtilis strains. Surfactin is well-accepted as one of the most powerful biosurfactants, presents excellent surface activities, can significantly reduce the surface tension force of water to below 27mN/m at a concentration of 10-30mg/L. In addition, surfactin has great biological activities like: anti-fungal, anti-virus, anti-tumor, insecticidal and anti-mycoplasma, and thus has of great applications potential in the fields of medicine, agriculture, food, cosmetics and petroleum industries. However, its real industrial applications were limited by the high production cost and lack of specific application yields. Many efforts have been done towards the improvement of surfactin production. The recent progresses on surfactin production, and its applications as an antibacterial agent have been reviewed.



Key wordsSurfactin      Bacillus      Biosurfactant      Antibacterial     
Received: 14 December 2019      Published: 02 June 2020
ZTFLH:  Q815  
Corresponding Authors: Xu-wei LONG     E-mail: xuweilong@njust.edu.cn
Cite this article:

MEI Yu-wei,YANG Zi-yun,YU Fan,LONG Xu-wei. Recent Progress on Fermentation and Antibacterial Applications of Surfactin. China Biotechnology, 2020, 40(5): 105-116.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1912023     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I5/105

Fig.1 Chemical structure of biosurfactant surfactin
Microorganism Scale Surfactin yield(g/L) Reference
B. subtilis ATCC 21332 500ml flask 0.33 [22]
B. amyloliquefaciens MT45 500ml flask 1.04 [23]
B. subtilis CWS1 500ml flask 0.99 [24]
Bacillus subtilis MZ-7 250ml flask 0.28 [25]
Bacillus subtilis BS5 250ml flask 0.3 [26]
Bacillus subtilis E8 3.7L 0.75 [27]
B. subtilis SPB1 250ml flask 0.72 [28]
Microorganism Surfactin yield (g/L) Strain modifications Surfactin yield(g/L) Reference
B. subtilis fmbR 0.38 Replacement of PsrfA with Pspac 3.86 [29]
B. subtilis THY-7 0.55 Replacement of PsrfA with PgroE 0 [30]
Replacement of PsrfA with PsacB 1.09
Replacement of PsrfA with PsacP 0.22
Replacement of PsrfA with Pg1 1.44
Replacement of PsrfA with Pg2 5.98
Replacement of PsrfA with Pg3 9.74
B. subtilis THY-15 1.2 Replacement of PsrfA and Pg3 8.2 [31]
Introduce VHb gene 10.2
B. subtilis 168 0 Introduce srfA gene 0.4 [32]
Deleting the biofilm formation-related genes 1.4
Deleting the nonribosomal peptide synthetase/polyketide
synthase pathways
1.7
Over-expressing potential self-resistance associated proteins 3.8
Engineering the branched-chain fatty acid biosynthesis pathway 8.5
Enhancing srfA transcription 12.8
Table 1 Yield of surfactin produced by different strains
Microorganism Agro-industrial waste Addition of agro-industrial waste Surfactin yield Reference
Bacillus amyloliquefaciens XZ-173 Rice straw and soybean flour 5g soybean flour, 4g rice straw, 2%
maltose and 2.65% glycerol
15.03mg/gds [41]
Bacillus subtilis MTCC 2423 Rice mill polishing residue Total carbohydrate : 4.76g/L 4.17g/kg residue [42]
Bacillus subtilis MTCC 2423 Waste frying sunflower oil 50g/L 14.9mg/g [43]
Waste frying rice bran oil 50g/L 11mg/g
Bacillus subtilis Hydrolysis of olive mill waste 5% 26.5mg/L [44]
B. amyloliquefaciens MT45
and B. amyloliquefaciens X82
Distillers' grains 200g/L 3.4g/L [23]
Bacillus subtilis 37 Feather hydrolysate waste
and glutamate mill waste
FHW (1%, V/V)
GMW (4%, V/V),
0.523g/L [45]
Bacillus pumilus UFPEDA 448 Okara 50% 3.3g/kg dry solids [46]
Bacillus subtilis ATCC 6633 Rehydrated whey powder 10%~20% 0.18~0.29g/L [47]
Table 2 Production of surfactin using agricultural and industrial waste as carbon source by different Bacillus subtilis
Fig.2 The mechanism of destroying cell membrane treated by surfactin (a)Schematic diagram of inserting into cell membrane (b) Schematic diagram of destroying cell membrane
Microorganism Inhibited-strain MIC(g/L) MBC(g/L) Reference
B. subtilis MSH1 Shigella dysenteriae
Staphylococcus aureus
0.15
0.2
0.2
0.25
[72]
Bacillus subtilis S. aureus ATCC65389 0.032 0.128 [69]
B. subtilis MB198, MB245, MB199,
and MB200
Candida albicans SC5314 >0.1 [39]
Bacillus safensis F4 Staphylococcus epidermidis S61
Staphylococcus aureus ATCC 9144
Agrobacterium tumefaciens
6.25
1.56
3.125
[73]
B. subtilis AM1 Legionella bozemanii ATCC 33217 0.001 [74]
B. subtilis PB2-L1 Fusarium moniliforme ATCC3893 0.05 [75]
Bacillus subtilis ATCC 6633 Staphylococcus aureus ATCC 29213 >0.5 [76]
Bacillus subtilis pB2 Staphylococcus aureus AS1.2465 0.02 [77]
Table 3 MIC and MBC values of surfactin against different strains
[1]   Arima K, Kakinuma A, Tamura G . Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun, 1968,31(3):488-494.
doi: 10.1016/0006-291X(68)90503-2
[2]   Park G, Nam J, Kim J , et al. Structure and mechanism of surfactin peptide from Bacillus velezensis antagonistic to fungi plant pathogens. Bulletin of the Korean Chemical Society, 2019,40(7):704-709.
[3]   Yeh M S, Wei Y H, Chang J S . Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnology Progress, 2010,21(4):1329-1334.
[4]   Chen W C, Juang R S, Wei Y H . Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal, 2015,103:158-169.
[5]   Yang H, Li X, Li X , et al. Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Analytical and Bioanalytical Chemistry, 2015,407(9):2529-2542.
[6]   杨子云, 马科锋, 何禹锟 , 等. Surfactin的生产及在石油工业的应用研究进展. 生物加工过程, 2018,16(1):67-74.
[6]   Yang Z Y, Ma K F, He Y K , et al. Advances in production of surfactin and its application in petroleum industry. Chinese Journal of Bioprocess Engineering, 2018,16(1):67-74.
[7]   朱玲燕, 刘强, 刘洋 , 等. 培养基组分对枯草芽胞杆菌产表面活性素的影响. 生物加工过程, 2015,13(5):8-13.
[7]   Zhu L Y, Liu Q, Liu Y , et al. Optimization of culture medium for high production of surfactin c15 component by Bacillus subtilis. Chinese Journal of Bioprocess Engineering, 2015,13(5):8-13.
[8]   崔艳红, 黄现 . 生物表面活性剂——表面活性素. 生物技术, 2006,20(52):1695-1699.
[8]   Cui Y H, Huang X . Surfactant from microbial——surfactin. Biotechnology, 2006,20(52):1695-1699.
[9]   Peypoux F, Bonmatin J, Wallach J . Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 1999,51(5):553-563.
[10]   Bonmatin J M, Genest M, Labbé H , et al. Solution three-dimensional structure of surfactin: A cyclic lipopeptide studied by 1H-nmr, distance geometry, and molecular dynamics . Biopolymers: Original Research on Biomolecules, 1994,34(7):975-986.
[11]   Bonmatin J M, Labbé H, Grangemard I , et al. Production, isolation and characterization of [Leu 4]-and [Ile 4] surfactins from Bacillus subtilis. Letters in Peptide Science, 1995,2(1):41-47.
[12]   Fei D, Zhou G W, Yu Z Q , et al. Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations. Journal of Surfactants and Detergents, 2020,23(1):109-118.
[13]   翟少伟, 李剑, 史庆超 . 抗菌脂肽 Surfactin 的抗菌活性及应用. 动物营养学报, 2015,27(5):1333-1340.
[13]   Zhai S W, Li J, Shi Q C . Antimicrobial lipopeptide surfactin: antimicrobial activity and applications. Chinese Journal of Animal Nutrition, 2015,27(5):1333-1340.
[14]   曹小红, 焦润芝, 王春玲 , 等. Bacillus natto TK-1 产脂肽的结构鉴定及其诱导 MCF-7 细胞凋亡的研究. 中国生物工程杂志, 2009,29(2):54-58.
[14]   Cao X H, Jiao R Z, Wang C L , et al. The structural identification and antitumor activity on MCF-7 cells of surfactin from Bacillus subtilis TK-1. China Biotechnology, 2009,29(2):54-58.
[15]   Yuan L, Zhang S, Peng J , et al. Synthetic surfactin analogues have improved anti-PEDV properties. PLoS One, 2019,14(4):e0215227.
[16]   Kosaric N, Sukan F V. Biosurfactants. Boca Raton: CRC Press, 2014: 83.
[17]   赵朋超, 王建华, 权春善 , 等. 枯草芽孢杆菌抗菌肽生物合成的研究进展. 中国生物工程杂志, 2010,30(10):108-113.
[17]   Zhao P C, Wang J H, Quan C S , et al. Progress on biosynthesis of antimicrobial peptides from Bacillus subtilis. China Biotechnology, 2010,30(10):108-113.
[18]   宋萍, 戚小灵, 胡燚 , 等. 响应面法优化枯草芽孢杆菌产脂肪酶的合成培养基. 中国生物工程杂志, 2010,30(8):100-105.
[18]   Song P, Qi X L, Hu Y , et al. Optimization of lipase production conditions by Bacillus subtilis using surface methodology. China Biotechnology, 2010,30(8):100-105.
[19]   Chen Y, Liu S A, Mou H , et al. Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Frontiers in Microbiology, 2017,8:871.
doi: 10.3389/fmicb.2017.00871
[20]   Alvarez F, Castro M, Príncipe A , et al. The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of Applied Microbiology, 2012,112(1):159-174.
[21]   Yeh M S, Wei Y H, Chang J S . Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochemistry, 2006,41(8):1799-1805.
[22]   Wei Y H, Chu I M . Mn2+ improves surfactin production by Bacillus subtilis . Biotechnology Letters, 2002,24(6):479-482.
[23]   Zhi Y, Wu Q, Xu Y . Production of surfactin from waste distillers' grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresource Technology, 2017,235:96-103.
doi: 10.1016/j.biortech.2017.03.090
[24]   Kan S C, Lee C C, Hsu Y C , et al. Enhanced surfactin production via the addition of layered double hydroxides. Journal of the Taiwan Institute of Chemical Engineers, 2017,80:10-15.
[25]   Al-Ajlani M M, Sheikh M A, Ahmad Z , et al. Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories, 2007,6(1):17.
[26]   Abdel-Mawgoud A M, Aboulwafa M M, Hassouna A H . Characterization of surfactin produced by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 2008,150(3):289-303.
[27]   Gong G, Zheng Z, Chen H , et al. Enhanced production of surfactin by Bacillus subtilis E8 mutant obtained by ion beam implantation. Food Technology and Biotechnology, 2009,47(1):27-31.
[28]   Ghribi D, Ellouze-Chaabouni S . Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnology Research International, 2011,2011:653654.
[29]   Sun H, Bie X, Lu F , et al. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Canadian Journal of Microbiology, 2009,55(8):1003-1006.
[30]   Jiao S, Li X, Yu H , et al. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnology and Bioengineering, 2017,114(4):832-842.
[31]   Wang Q, Yu H, Wang M , et al. Enhanced biosynthesis and characterization of surfactin isoforms with engineered Bacillus subtilis through promoter replacement and Vitreoscilla hemoglobin co-expression. Process Biochemistry, 2018,70:36-44.
[32]   Wu Q, Zhi Y, Xu Y . Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic Engineering, 2019,52:87-97.
[33]   Yang H, Yu H, Shen Z . A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. Journal of Industrial Microbiology & Biotechnology, 2015,42(8):1139-1147.
[34]   董玉国, 王丽华, 徐瑞 , 等. 根癌农杆菌介导透明颤茵血红蛋白基因 (vgb) 在短密青霉菌中的克隆表达. 高校化学工程学报, 2015,29(1):133-137.
[34]   Dong Y G, Wang L H, Xu R , et al. Cloning and expression of vgb gene in Penicillium brevicompactum by Agrobacterium tumefaciens-mediates transformation (ATMT). Journal of Chemical Engineering of Chinese Universities, 2015,29(1):133-137.
[35]   Kolodkin-Gal I, Cao S, Chai L , et al. A Self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell, 2015,161(4):946-946.
doi: 10.1016/j.cell.2015.04.039
[36]   López D, Vlamakis H, Losick R , et al. Paracrine signaling in a bacterium. Genes & Development, 2009,23(14):1631-1638.
[37]   Li X, Yang H, Zhang D , et al. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 2015,42(1):93-103.
[38]   Zhi Y, Wu Q, Xu Y . Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Scientific Reports, 2017,7:40976.
[39]   Liu X, Ren B, Gao H , et al. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One, 2012,7(5):e34430.
doi: 10.1371/journal.pone.0034430
[40]   Abdel-Mawgoud A M, Aboulwafa M M, Hassouna N A H . Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 2008,150(3):305-325.
doi: 10.1007/s12010-008-8155-x
[41]   Zhu Z, Zhang F, Wei Z , et al. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. Journal of Environmental Management, 2013,127:96-102.
doi: 10.1016/j.jenvman.2013.04.017
[42]   Gurjar J, Sengupta B . Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423. Bioresource Technology, 2015,189:243-249.
doi: 10.1016/j.biortech.2015.04.013
[43]   Vedaraman N, Venkatesh N . Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Brazilian Journal of Chemical Engineering, 2011,28(2):175-180.
[44]   Ramírez I M, Vaz D A, Banat I M , et al. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresource Technology, 2016,205:1-6.
doi: 10.1016/j.biortech.2016.01.016
[45]   Chen C, Lin J, Wang W , et al. Cost-effective production of surfactin from xylose-rich corncob hydrolysate using Bacillus subtilis BS-37. Waste and Biomass Valorization, 2019,10(2):341-347.
[46]   Slivinski C T, Mallmann E, De Araújo J M , et al. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochemistry, 2012,47(12):1848-1855.
[47]   Cagri-Mehmetoglu A, Kusakli S, Van De Venter M . Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. Journal of Dairy Science, 2012,95(7):3643-3649.
doi: 10.3168/jds.2012-5385
[48]   黄翔峰, 詹鹏举, 彭开铭 , 等. 培养基中铁离子对枯草芽孢杆菌 CICC 23659 发酵产脂肽的影响研究. 中国生物工程杂志, 2013,33(6):52-61.
[48]   Huang X F, Zhan P J, Peng K M , et al. Study on the influence of iron dosage in the medium on fermentation of lipopeptide produced by Bacillus subtilis CICC 23659. China Biotechnology, 2013,33(6):52-61.
[49]   Wei Y H, Wang L F, Changy J S , et al. Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. Journal of Bioscience & Bioengineering, 2003,96(2):174-178.
[50]   Huang X, Liu J N, Wang Y , et al. The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332 . Biotechnology & Biotechnological Equipment, 2015,29(2):381-389.
[51]   Wei Y H, Lai C C, Chang J S . Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochemistry, 2007,42(1):40-45.
doi: 10.1016/j.procbio.2006.07.025
[52]   Wei Y H, Wang L F, Chang J S . Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnology Progress, 2004,20(3):979-983.
[53]   Sen R, Swaminathan T . Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. Applied Microbiology and Biotechnology, 1997,47(4):358-363.
doi: 10.1007/s002530050940
[54]   Banat I M . The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnology Letters, 1993,15(6):591-594.
doi: 10.1007/BF00138546
[55]   Chang P H, Li S Y, Juang T Y , et al. Mg-Fe layered double hydroxides enhance surfactin production in bacterial cells. Crystals, 2019,9(7):355.
[56]   Sen R, Swaminathan T . Response surface modeling and optimization to elucidate and analyze the effects of inoculum age and size on surfactin production. Biochemical Engineering Journal, 2004,21(2):141-148.
doi: 10.1016/j.bej.2004.06.006
[57]   Fan X, Zhu H, Guo D , et al. Optimization of lipopeptide production by Bacillus amyloliquefaciens B15 using response surface methodology. Vestnik of Ulyanovsk State Agricultural Academy, 2015,4(28):15-19.
[58]   陈亮, 毛晶晶, 宇光海 , 等. 响应面法优化Bacillus subtilis抗菌脂肽发酵工艺条件. 食品科技, 2015,40(4):17-21.
[58]   Chen L, Mao J J, Yu G H , et al. Optimization of fermentation conditions for enhanced antimicrobial lipopeptide production by Bacillus subtilis LM2303 using response surface methodology. Food Science & Technology, 2015,40(4):17-21.
[59]   刘丽 . 耐盐短杆菌 Y-1-4 产脂肽类生物表面活性剂的研究. 青岛:青岛科技大学, 2016.
[59]   Liu L . The study on lipopeptid biosurfactant productong by breibactreium halotolerans Y-1-4. Qingdao: Qingdao University of Science and Technology, 2016.
[60]   戴超 . 脂肽类生物表面活性剂的提取工艺及其乳化性的研究. 南京: 南京农业大学, 2013.
[60]   Dai C . Study on extraction process and emulsifying properties of lipopeptide biosurfactant. Nanjing :Nanjing Agricultural University, 2013.
[61]   Dhanarajan G, Mandal M, Sen R . A combined artificial neural network modeling-particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochemical Engineering Journal, 2014,84:59-65.
[62]   Deleu M, Lorent J, Lins L , et al. Effects of surfactin on membrane models displaying lipid phase separation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013,1828(2):801-815.
doi: 10.1016/j.bbamem.2012.11.007
[63]   Ostroumova O S, Malev V V, Ilin M G , et al. Surfactin activity depends on the membrane dipole potential. Langmuir, 2010,26(19):15092-15097.
doi: 10.1021/la102691y
[64]   Fan H Y, Nazari M, Raval G , et al. Utilizing zeta potential measurements to study the effective charge, membrane partitioning, and membrane permeation of the lipopeptide surfactin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2014,1838(9):2306-2312.
[65]   Carrillo C, Teruel J A, Aranda F J , et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2003,1611(1-2):91-97.
doi: 10.1016/S0005-2736(03)00029-4
[66]   Vollenbroich D, Pauli G, Ozel M , et al. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol, 1997,63(1):44-49.
doi: 10.1128/AEM.63.1.44-49.1997
[67]   Horng Y B, Yu Y H, Dybus A , et al. Antibacterial activity of Bacillus species-derived surfactin on Brachyspira hyodysenteriae and Clostridium perfringens. AMB Express, 2019,9(1):188.
[68]   Yuan L, Zhang S, Wang Y , et al. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. Journal of Virology, 2018,92(21):e00809-00818.
[69]   Liu J, Li W, Zhu X , et al. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology, 2019,103(11):4565-4574.
[70]   Krishnan N, Velramar B, Velu R K . Investigation of antifungal activity of surfactin against mycotoxigenic phytopathogenic fungus Fusarium moniliforme and its impact in seed germination and mycotoxicosis. Pesticide Biochemistry and Physiology, 2019,155:101-107.
doi: 10.1016/j.pestbp.2019.01.010
[71]   Paraszkiewicz K, Bernat P, Siewiera P , et al. Agricultural potential of rhizospheric Bacillus subtilis strains exhibiting varied efficiency of surfactin production. Scientia Horticulturae, 2017,225:802-809.
[72]   Isa M H M, Shannaq M A H F, Mohamed N , et al. Antibacterial activity of surfactin produced by Bacillus subtilis MSH1. Transactions on Science and Technology, 2017,4(3-3):402-407.
[73]   Abdelli F, Jardak M, Elloumi J , et al. Antibacterial, anti-adherent and cytotoxic activities of surfactin (s) from a lipolytic strain Bacillus safensis F4. Biodegradation, 2019,30:287-300.
doi: 10.1007/s10532-018-09865-4
[74]   Loiseau C, Schlusselhuber M, Bigot R , et al. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity. Applied Microbiology and Biotechnology, 2015,99(12):5083-5093.
doi: 10.1007/s00253-014-6317-z
[75]   Jiang J, Gao L, Bie X , et al. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiology, 2016,16(1):31.
[76]   Lima W G, Parreira A G, Nascimento L A A , et al. Absence of antibacterial, anti-candida, and anti-dengue activities of a surfactin isolated from Bacillus subtilis. Journal of Pharmaceutical Negative Results, 2018,9(1):27.
[77]   Gao L, Han J, Liu H , et al. Plipastatin and surfactin coproduction by Bacillus subtilis pB2-L and their effects on microorganisms. Antonie Van Leeuwenhoek, 2017,110(8):1007-1018.
doi: 10.1007/s10482-017-0874-y
[78]   Shaligram N S, Singhal R S . Surfactin: a review on biosynthesis, fermentation, purification and applications. Food Technology and Biotechnology, 2010,48(2):119-134.
[79]   Singh A K, Sharma P . Disinfectant-like activity of lipopeptide biosurfactant produced by Bacillus tequilensis strain SDS21. Colloids and Surfaces B: Biointerfaces, 2020,185:110514.
[80]   De Araujo L V, Guimar?es C R, Da Silva Marquita R L , et al. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control, 2016,63:171-178.
[81]   Biniarz P, Baranowska G, Feder-Kubis J , et al. The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Antonie Van Leeuwenhoek, 2015,108(2):343-353.
[82]   Mireles J R, Toguchi A, Harshey R M . Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. Journal of Bacteriology, 2001,183(20):5848-5854.
[83]   Hwang M, Kim M H, Gebru E , et al. Killing rate curve and combination effects of surfactin C produced from Bacillus subtilis complex BC1212 against pathogenic Mycoplasma hyopneumoniae. World Journal of Microbiology and Biotechnology, 2008,24(10):2277-2282.
doi: 10.1007/s11274-008-9752-0
[84]   Nitschke M, Araújo L, Costa S , et al. Surfactin reduces the adhesion of food‐borne pathogenic bacteria to solid surfaces. Letters in Applied Microbiology, 2009,49(2):241-247.
doi: 10.1111/lam.2009.49.issue-2
[85]   章栋梁 . Surfactin 工业分离纯化工艺及其对肉品的防腐保鲜效果. 南京: 南京农业大学, 2013.
[85]   Zhang D L . Study of the industrial process for the separation and purification of surfactin and its effect on meat preservation. Nanjing :Nanjing Agricultural University, 2013.
[1] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[2] MA Cui-ping,LIU Duo-duo,PAN Bing-ju,SHEN Hui-tao,SONG Ya-jian. Cloning and Characterization of Acetylesterase AesA Derived from Mannan Utilization Gene Cluster of Bacillus sp. N16-5[J]. China Biotechnology, 2020, 40(3): 65-71.
[3] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[4] Fa-bin LI,Lu LIU,Yan DU,Rui Ban. Construction of Recombinant Bacillus subtilis as Catalyst for Preparing D- p-Hydroxyphenylglycine[J]. China Biotechnology, 2019, 39(3): 75-86.
[5] Ding-hao DENG,Yong-le XIAO,Jian-xue TANG,Xing YANG,Rong GAO. Eukaryotic Expression of Porcine IL-17 Gene and its Bioactivity[J]. China Biotechnology, 2018, 38(8): 10-18.
[6] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[7] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[8] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[9] Yu-shuai LIU,Jie ZHANG,Jin ZHONG,Jing LI,Li-qiang MENG,Shu-mei ZHANG. Isolation and Identification of Antibacterial Lipopeptides Fengycin Produced by Bacillus amyloliquefaciens TF28 and Its Anti-fungal Mechanism Studies[J]. China Biotechnology, 2018, 38(10): 20-29.
[10] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[11] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[12] XIE Huan, YU Hui-min, SHEN Zhong-yao. Structure, Properties and Synthesis Reinforcement of Fengycins: Lipopeptide Biosurfactant[J]. China Biotechnology, 2015, 35(7): 102-110.
[13] HUANG Xiang-feng, WANG Yi-han, LIU Jia-nan, LIU Jia, LU Li-jun. Research Progress in the Impacts of Promoting Factors on Biosurfactants Synthesis[J]. China Biotechnology, 2014, 34(7): 81-88.
[14] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[15] MING Fei-ping, YANG Jun, ZHU Jin-mei, KUANG Zhe-shi, LI Hua-zhou, XIA Feng-geng, YE Ming-qiang, WANG Hou-guang, ZHAO Xiang-jie, HUANG Zhi-feng, MA Miao-peng, SHI Ju-qing, CAI Hai-ming, ZHANG Ling-hua. Modification of 5’UTR Sequences of pPIC9K Increases Expression of Antimicrobial Peptide PR39[J]. China Biotechnology, 2013, 33(12): 86-91.