Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (3): 132-143    DOI: 10.13523/j.cb.1907022
Orginal Article     
Properties and Applications of Stimuli-Responsive DNA Hydrogels
CHENG Ping1,ZHANG Yang-zi2,MA Xuan2,CHEN Xu2,ZHU Bao-qing1,XU Wen-tao2,**()
1 College of Biological Science and Technology, Beijing Forestry University, Beijing 100083,China
2 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083,China
Download: HTML   PDF(588KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As a biosynthetic molecule, DNA hydrogels are equipped with specificity, biodegradability and molecular recognition belonging to DNA molecule and high hydrophilicity belonging to hydrogels. Stimuli-responsive DNA hydrogels are mainly prepared by response behaviors of DNA branch structure formed by complementary pairing of bases of DNA sequences or i-motifs formed by DNA special sequences of many functional nucleic acid, T-A·T or C-G·C + triplexes and G-quadruplexes in environment triggers. Recently, stimuli-responsive DNA hydrogels possess broad applications of biosensors, bioimaging, drug delivery, biomaterials etc. with unique response property in single triggers such as temperature, pH, light, metal ions etc. and multi-triggers such as photothermal, metal ions-organics, temperature-pH. The origins of DNA molecule, classification, formation and characterization of stimuli-responsive DNA Hydrogels are developed. Response behaviors to environments and applications of stimuli-responsive DNA hydrogels are reviewed. The current research hotspots of stimuli-responsive DNA hydrogels are summarized. The development trend of stimuli-responsive DNA hydrogels in the future is predicted.



Key wordsDNA hydrogel      Stimulus      Biosensors      Drug delivery      Biomaterials     
Received: 10 July 2019      Published: 18 April 2020
ZTFLH:  Q78  
Corresponding Authors: Wen-tao XU     E-mail: xuwentao@cau.edu.cn
Cite this article:

CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels. China Biotechnology, 2020, 40(3): 132-143.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1907022     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I3/132

Fig.1 Three conformations of i-motif (a) Monomer i-motif (b) Dimer i-motif (c) Tetramer i-motif
[1]   陈娇娇, 袁世睿, 宋亚 , 等. DNA凝胶的研究进展. 国际药学研究杂志, 2017,44(10):935-941.
[1]   Chen J J, Yuan S R, Song Y , et al. Research progress of DNA hydrogel. Journal of International Pharmaceutical Research, 2017,44(10):935-941.
[2]   翟茂林, 哈鸿飞 . 水凝胶的合成,性质及应用. 大学化学, 2001,16(5):22-27.
[2]   Zhai M L, Ha H F . Synthesis, properties and applications of hydrogels. University Chemistry, 2001,16(5):22-27.
[3]   杨振, 杨连利 . 水凝胶的研究进展及发展新动向. 化工中间体, 2007, ( 1):5-10.
[3]   Yang Z, Yang L L . Research status and prospective development of hydrogel. Chemical Intermediates, 2007, ( 1):5-10.
[4]   Wang D, Hu Y, Liu P F , et al. Bioresponsive DNA hydrogels: beyond the conventional stimuli responsiveness. Accounts of Chemical Research, 2017,50(4):733-739.
[5]   宋萍, 叶德楷, 宋世平 , 等. DNA水凝胶的制备及生物应用. 化学进展, 2016,28(5):628-636.
[5]   Song P, Ye D K, Song S P , et al. Preparation and biological applications of DNA hydrogel. Progress in Chemistry, 2016,28(5):628-636.
[6]   邵昱, 李闯, 周旭 , 等. DNA超分子水凝胶. 高分子通报, 2015, ( 9):100-108.
[6]   Shao Y, Li C, Zhou X , et al. Supramolecular DNA hydrogel. Chinese Polymer Bulletin, 2015, ( 9):100-108.
[7]   Dong X, Wei C, Lu L , et al. Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging. Materials Science and Engineering C, 2016,61:214-219.
[8]   Kahn J S, Hu Y W, Willner I . Stimuli-responsive DNA-based hydrogels: from basic principles to applications. Accounts of Chemical Research, 2017,50(4):680-690.
[9]   Liu J W . Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011,7:6757-6767.
[10]   Xiong X L, Wu C C, Zhou C S , et al. Responsive DNA-based hydrogels and their applications. Macromol Rapid Commun, 2013,34(16):1271-1283.
[11]   Gehring K, Leroy J L , Guéron, et al. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature, 1993,363(6429):561-565.
[12]   Leroy J L, Gehring K, Kettani A , et al. Acid multimers of oligodeoxycytidine strands: Stoichiometry, base-pair characterization, and proton exchange properties. Biochemistry, 1993,32(23):6019-6031.
[13]   Chen C, Li M, Xing Y , et al. Study of pH-induced folding and unfolding kinetics of the DNA i-motif by stopped-flow circular dichroism. Langmuir, 2012,28(51):17743-17748.
[14]   闫永凤 . DNA双亲分子自组装以及对i-motif结构的影响机制研究. 青岛: 中国石油大学, 2016.
[14]   Yan Y F . DNA Amphiphilic molecules self-assembly and studies on mechanisms of the effects on i-motif structure. Qingdao: China University of Petroleum, 2016.
[15]   Cheng E J, Xing Y Z, Chen P , et al. A pH-triggered, fast-responding DNA hydrogel. Angewandte Chemie-International Edition, 2009,48(41):7660-7663.
[16]   Liao W C, Lilienthal S, Kahn J S , et al. pH-and ligand-induced release of loads from DNA-acrylamide hydrogel microcapsules. Chemical Science, 2017,8(5):3362-3373.
[17]   Xu W L, Huang Y S, Zhao H R , et al. DNA Hydrogel with tunable pH-responsive properties produced by rolling circle amplification. Chemistry- A European Journal, 2017,23(72):18276-18281.
[18]   Hu Y W, Guo W W, Kahn J S , et al. A Shape-memory DNA-based hydrogel exhibiting two internal memories. Angewandte Chemie-International Edition, 2016,55(13):4210-4214.
[19]   Ren J T, Hu Y W, Lu C H , et al. pH-responsive and switchable triplex-based DNA hydrogels. Chemical Science, 2015,6(7):4190-4195.
[20]   Hu Y W, Lu C H, Guo W W , et al. A shape memory acrylamide/DNA hydrogel exhibiting switchable dual pH-responsiveness. Advanced Functional Materials, 2015,25(44):6867-6874.
[21]   Kang H Z, Liu H P, Zhang X L , et al. Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir, 2011,27(1):399-408.
[22]   Peng L, You M X, Yuan Q , et al. Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization. Journal of the American Chemical Society, 2012,134(29):12302-12307.
[23]   Shimomura S, Nishimura T, Ogura Y , et al. Photothermal fabrication of microscale patterned DNA hydrogels. Royal Society Open Science, 2018,5(2):171779.
[24]   Yu X, Hu Y W, Kahn J S , et al. Orthogonal dual-triggered shape-memory DNA-based hydrogels. Chemistry, 2016,2(41):14504-14507.
[25]   Guo W, Qi X J, Orbach R , et al. Reversible Ag(+)-crosslinked DNA hydrogels. Chemical Communications, 2014,50(31):4065-4068.
[26]   Tanaka S, Wakabayashi K, Fukushima K , et al. Intelligent, biodegradable, and self-healing hydrogels utilizing DNA quadruplexes. Chemistry- An Asian Journal, 2017,12(18):2388-2392.
[27]   Lu C H, Guo W W, Hu Y W , et al. Multitriggered shape-memory acrylamide-DNA hydrogels. Journal of the American Chemical Society, 2015,137(50):15723-15731.
[28]   Wei X F, Tian T, Jia S , et al. Target-responsive DNA hydrogel mediated "stop-flow" microfluidic paper-based analytic device for rapid, portable and visual detection of multiple targets. Analytical Chemistry, 2015,87(8):4275-4282.
[29]   Ma Y L, Mao Y, An Y , et al. Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst, 2018,143(7):1679-1684.
[30]   Chen W H, Liao W C, Sohn Y S , et al. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Advanced Functional Materials, 2018,28(8):1705137.
[31]   He Y, Yang X, Yuan R , et al. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Analytical Chemistry, 2017,89(16):8538-8544.
[32]   Lyu D Y, Chen S S, Guo W W . Liposome crosslinked polyacrylamide/DNA hydrogel: a smart controlled-release system for small molecular payloads. Small, 2018,14(15):1-8.
[33]   陈庆山, 刘春燕, 刘迎雪 , 等. 核酸体外扩增技术. 中国生物工程杂志, 2004,24(5):10-14.
[33]   Chen Q S, Liu C Y, Liu Y X , et al. Progress of nucleic acid amplification technologies. China Biotechnology, 2004,24(5):10-14.
[34]   杨婵, 王瑞嘉, 何婧琳 , 等. 杂交链式反应在生物传感探针设计方面的应用. 化学传感器, 2017,37(3):13-21.
[34]   Yang C, Wang R J, He J L , et al. Application of hybrid chain reaction in biosensing probe design. Chemical Sensors, 2017,37(3):13-21.
[35]   王晓亮, 王星宇, 梁长城 , 等. DNA的滚环扩增技术研究进展. 食品工业科技, 2012,33(16):358-363.
[35]   Wang X L, Wang X Y, Liang C C , et al. Research progress of rolling circle amplification of DNA. Science and Technology of Food Industry, 2012,33(16):358-363.
[36]   Ali M M, Li F, Zhang Z Q , et al. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews, 2014,43(10):3324-3341.
[37]   Mori Y, Kitao M, Tomita N , et al. Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods, 2004,59(2):145-157.
[38]   Liu N N, Huang F J, Lou X D , et al. DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Science China-Chemistry, 2017,60(3):311-318.
[39]   Wang G F, He X P, Zhu Y H , et al. G-quadruplex-linked supersandwich DNA structure for electrochemical amplified detection of thrombin. Electroanalysis, 2013,25(8):1960-1966.
[40]   Wang J B, Chao J, Liu H J , et al. Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angewandte Chemie-International Edition, 2017,56(8), 2171-2175.
[41]   刘剑霜, 谢锋, 吴晓京 , 等. 扫描电子显微镜. 上海计量测试, 2003,30(6):37-39.
[41]   Liu J S, Xie F, Wu X J , et al. Scanning electron microscope. Shanghai Measurement and Testing, 2003,30(6):37-39.
[42]   Guo W W, Lu C H, Qi X J , et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angewandte Chemie-International Edition, 2014,53(38):10134-10138.
[43]   Topuz F, Okay O . Rheological behavior of responsive DNA hydrogels. Macromolecules, 2008,41(22):8847-8854.
[44]   Topuz F, Okay O . Formation of hydrogels by simultaneous denaturation and cross-linking of DNA. Biomacromolecules, 2009,10(9):2652-2661.
[45]   张旭, 徐维奇 . 激光扫描共聚焦显微镜技术的发展及应用. 现代科学仪器, 2001,11(2):21-23.
[45]   Zhang X, Xu W Q . Development of confocal microscopy and its application. Modern Scientific Instruments, 2001,11(2):21-23.
[46]   霍霞, 吕建勋, 杨仁东 , 等. 激光共聚焦显微镜与光学显微镜之比较. 激光生物学报, 2001,10(1):76-79.
[46]   Huo X, Lv J X, Yang R D , et al. Comparison of laser scanning confocal microscope with light microscope. Acta Laser Biology Sinica, 2001,10(1):76-79.
[47]   张瑞, 叶仲斌, 罗平亚 . 原子力显微镜在聚合物溶液结构研究中的应用. 电子显微学报, 2010,29(5):475-481.
[47]   Zhang R, Ye Z B, Luo P Y . The atomic force microscopy study on the microstructure of the polymer solution. Journal of Chinese Electron Microscopy Society, 2010,29(5):475-481.
[48]   Binnig G, Quate C F, Gerber C . Atomic force microscope. Physical Review Letters, 1986,56(9):930-934
[49]   Hoo C M, Starostin N, West P , et al. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal of Nanoparticle Research, 2008,10(1):89-96.
[50]   Li J, Zheng C, Cansiz S , et al. Self-assembly of DNA nanohydrogels with controllable size and stimuli-responsive property for targeted gene regulation therapy. Journal of the American Chemical Society, 2015,137(4):1412-1415.
[51]   刘振佳, 司伊康, 陈晓光 . 圆二色谱测定技术在小分子化合物与DNA相互作用研究中的应用. 药学学报, 2010,45(12):1478-1484.
[51]   Liu Z J, Si Y K, Chen X G . Application of circular dichroism to the study of interactions between small molecular compounds and DNA. Acta Pharmaceutica Sinica, 2010,45(12):1478-1484.
[52]   Willner I . Stimuli-controlled hydrogels and their applications. Accounts of Chemical Research, 2017,50(4):657-658.
[53]   Xing Y Z, Cheng E J, Yang Y , et al. Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Advanced Materials, 2011,23(9):1117-1121.
[54]   Uzumcu A T, Guney O, Okay O . Nanocomposite DNA hydrogels with temperature sensitivity. Polymer, 2016,100:169-178.
[55]   Mansukhani N D, Guiney L M, Wei Z H , et al. Optothermally reversible carbon nanotube-DNA supramolecular hybrid hydrogels. Macromolecular Rapid Communications, 2018,39(2):1-6.
[56]   Ishizuka N, Hashimoto Y C, Matsuo Y, et al. Highly expansive DNA hydrogel films prepared with photocrosslinkable poly( vinyl alcohol) . Colloids and Surfaces A-Physicochemical and Engineering Aspects , 2006, 284- 285:440-443.
[57]   Huang Y S, Fang L T, Zhu Z , et al. Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Biosensors and Bioelectronics, 2016,85:496-502.
[58]   Lee S H, Lee C K, Shin S R , et al. The peculiar response of DNA hydrogel fibers to a salt and pH stimulus. Macromolecular Rapid Communications, 2009,30(6):430-434.
[59]   陈辉, 朱鸿杰 . 生物传感器研究进展. 河北农业科学, 2010,14(9):149-151.
[59]   Chen H, Zhu H J . Research progress of biosensor. Journal of Hebei Agricultural Sciences, 2010,14(9):149-151.
[60]   Zhang X, Guan Y, Zhang Y J . Ultrathin hydrogel films for rapid optical biosensing. Biomacromolecules, 2012,13(1):92-97.
[61]   Beyer A, Pollok S, Rudloff A , et al. Fast-track, one-step E. coli detection: a miniaturized hydrogel array permits specific direct PCR and DNA hybridization while amplification. Macromolecular Bioscience, 2016,16(9):1325-1333.
[62]   Zhang L, Lei J P, Liu L , et al. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Analytical Chemistry, 2013,85(22):11077-11082.
[63]   Dave N, Chan M Y, Huang P J , et al. Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. Journal of the American Chemical Society, 2010,132(36):12668-12673
[64]   丁陈君 . 生物成像技术发展态势分析. 世界科技研究与发展, 2018,40(4):368-375.
[64]   Ding C J . Analysis on development trend of biology imaging technology. World Sci-Tech R & D, 2018,40(4):368-375.
[65]   蒲源, 王丹, 钱骏 , 等. 荧光纳米材料及其生物成像应用. 中国材料进展, 2017,36(2):103-111.
[65]   Pu Y, Wang D, Qian J , et al. Fluorescent nanomaterials and their applications in bioimaging. Materials China, 2017,36(2):103-111.
[66]   Meng X D, Zhang K, Dai W H , et al. Multiplex microRNA imaging in living cells using DNA-capped-Au assembled hydrogels. Chemical Science, 2018,9(37):7419-7425.
[67]   Jiang H L, Kim Y K, Lee S M , et al. Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Archives of Pharmacal Research, 2010,33(4):551-556.
[68]   Kang H Z, Liu H P, Zhang X L , et al. Photoresponsive DNA-crosslinked hydrogels for controllable release and cancer therapy. NIH Public Access Author Manuscript, 2012,27(1), 399-408.
[69]   魏玉雪, 刘晓秋, 李迪 , 等. 3D打印技术在细胞打印方面的应用与发展. 海南医学, 2017,28(5):801-804.
[69]   Wei Y X, Liu X Q, Li D , et al. Application and development of 3D printing technology in cell printing. Hainan Medical Journal, 2017,28(5):801-804.
[70]   Li C, Jones A F, Dun A R , et al. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angewandte Chemie, 2015,127(13):4029-4040.
[1] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[2] LIAN Jiang-ru,MA Wei-fang. Advances in the Application of DNA Hydrogels to the Rapid Detection of Environmental Samples[J]. China Biotechnology, 2021, 41(2/3): 107-115.
[3] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[4] ZHANG Zheng-yan,CHEN Yu,SONG Li-jie,SU Zheng-quan,ZHANG Hai-yan. Advances in the Application of Field Effect Transistor Biosensor in Biomedical Detection[J]. China Biotechnology, 2021, 41(10): 73-88.
[5] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[6] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[7] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[8] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[9] ZHANG Xiao-min, WANG Shi-yong, LI Gen, ZHAO Hong-bin. The Study of Osteogenic Induction of Type Ⅰ Collagen /Poly(caprolactone)/Attapulgite Composite Scaffold Materials in Vitro[J]. China Biotechnology, 2016, 36(5): 27-33.
[10] SHEN Ting-ting, ZHANG Guang-ya. Self-assembly Mechanism and Biological Applications of Smart Peptides[J]. China Biotechnology, 2014, 34(5): 87-91.
[11] ZHAO Hui, ZHENG Wen-ling, PENG Yi-fei, MA Wen-li. Protection Effect of Recombinant Oral Rabies Vaccine for Human Use on Immunity of Mice[J]. China Biotechnology, 2014, 34(1): 9-14.
[12] WANG De-ping. Analysis of Research and Development on Nano Biomaterials Topics in "Eleventh Five-Year Plan" National High Technology Research and Development Program[J]. China Biotechnology, 2012, 32(10): 135-138.
[13] LI Ling-ling, ZHOU Wei, DAI Fang-yin, MEI Xiao-xiong, FAN Cheng-qi, YANG Xia, WU Yu-zhang. Preparation and Characterization of Silk Fibroin Treated with Different Calcium-alcohol Solution[J]. China Biotechnology, 2012, 32(04): 28-32.
[14] XIA Song, ZHANG Cheng-wu. Diatom Nanotechnology[J]. China Biotechnology, 2011, 31(5): 126-130.
[15] . Diatom Nanotechnology[J]. China Biotechnology, 2011, 31(05): 0-0.