Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (1-2): 21-37    DOI: 10.13523/j.cb.2002102
Orginal Article     
A Bibliometric Analysis on Coronaviruses
GONG Yue1,**(),LIAO Qing-yun1,YU Qian-qian1,SHI Zhi-xiang2,**(),CHEN Jing2,ZHANG Yu-hui2,ZHAO Guang-hui2
1 National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2 China Pharmaceutical University, Nanjing 211198, China
Download: HTML   PDF(2936KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In late 2019, a novel coronavirus caused febrile respiratory illness(COVID-19) in Wuhan. The continuous spread of COVID-19 in China and its surrounding countries puts forward a new demand for the prevention and control of this epidemic globally. A bibliometric analysis of the research on coronaviruses has been done in this research, and information related to the main countries, core institutions, key research fields were analyzed, which reveals the current research trends of the diagnosis, prevention and treatment of coronaviruses from a global perspective. The results will provide reference for the current joint research.



Key wordsCoronavirus      Severe Acute Respiratory Syndrome (SARS)      Middle East Respiratory Syndrome (MERS)      Bibliometric     
Received: 20 February 2020      Published: 27 March 2020
ZTFLH:  Q819  
Corresponding Authors: Yue GONG,Zhi-xiang SHI     E-mail: gongy@mail.las.ac.cn;shizhixiangcpu@vip.188.com
Cite this article:

GONG Yue,LIAO Qing-yun,YU Qian-qian,SHI Zhi-xiang,CHEN Jing,ZHANG Yu-hui,ZHAO Guang-hui. A Bibliometric Analysis on Coronaviruses. China Biotechnology, 2020, 40(1-2): 21-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2002102     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I1-2/21

Fig.1 Chronological research trend of coronaviruses
国家/地区 发文数量 占比 累计占比
美国 7 123 33.32% 33.32%
中国大陆 3 740 17.50% 48.08%
德国 1 588 7.43% 54.01%
英国 1 345 6.29% 58.18%
加拿大 1 242 5.81% 61.89%
法国 1 156 5.41% 65.77%
荷兰 946 4.43% 68.30%
日本 919 4.30% 71.76%
意大利 732 3.42% 74.05%
中国台湾 699 3.27% 76.74%
Table 1 Top10 countries / regions involved in coronavirus research
Fig.2 National/regional cooperation network for the research of coronaviruses
排序 研究机构 论文量 国家(地区) 研究机构 论文量
1 香港大学 655 中国香港 香港大学 655
2 中国科学院 402 中国内地 中国科学院 402
3 多伦多大学 383 加拿大 香港中文大学 345
4 香港中文大学 345 中国香港 复旦大学 178
5 宾夕法尼亚大学 306 美国 中国农业科学院 170
6 美国疾病预防控制中心 283 美国 台湾大学 164
7 荷兰乌特勒支大学 273 荷兰 中国医学科学院 151
8 爱荷华大学 235 美国 北京大学 128
9 哈佛大学 232 美国 台湾中央研究院 125
10 卡罗莱纳大学 217 美国 台湾阳明大学 115
Table 2 TOP10 Institutions involved in coronavirus research (Global and China)
Fig.3 Cluster map of the research in coronaviruses
Fig.4 Chronological research trend of SARS
Fig.5 TOP10 countries / regions involved in SARS research
序号 机构 发文量
1 中国科学院 347
2 香港大学 257
3 香港中文大学 208
4 多伦多大学 92
5 北京大学 84
6 f台湾大学 81
7 新加坡国立大学 73
8 俄罗斯科学院 59
9 国立阳明大学 52
10 香港玛嘉烈医院 51
Table 3 TOP10 Institutions involved in SARS research
Fig.6 Chronological research trend of MERS
Fig.7 TOP10 countries / regions involved in MERS research
Fig.8 National/regional cooperation network for the research of MERS
序号 机构 所属国家 发文量
1 中国科学院 中国 39
2 香港大学 中国 38
3 沙特阿拉伯卫生部 沙特阿拉伯 34
4 爱荷华大学 美国 17
5 美国疾病预防控制中心 美国 17
6 费萨尔大学 沙特阿拉伯 17
7 复旦大学 中国 15
8 沙特国王大学 沙特阿拉伯 15
9 约翰霍普金斯阿美科医疗保健 沙特阿拉伯 14
10 国立卫生研究院过敏和
传染病研究所
美国 13
Table 4 TOP10 institutions involved in MERS research
国家/地区 发文数量 占比
美国 332 24.61%
中国大陆 253 18.75%
德国 93 6.89%
英国 86 6.38%
日本 77 5.71%
意大利 75 5.56%
加拿大 69 5.11%
法国 66 4.89%
韩国 65 4.82%
荷兰 55 4.08%
Table 5 TOP 10 countries/Regions in the research of coronavirus diagnosis
Fig.9 National/regional cooperation network for the research of coronavirus diagnosis
排序 研究机构(全球) 论文量 国家(地区) 研究机构(中国) 论文量
1 香港大学 50 中国香港 香港大学 50
2 中国科学院 25 中国内地 中国科学院 25
3 香港中文大学 18 中国香港 香港中文大学 18
4 美国疾病预防控制中心 18 美国 台湾大学 14
5 多伦多大学 18 加拿大 北京大学 13
6 日本国立传染病研究所 16 日本 香港玛丽皇后医院 12
7 首尔大学 15 韩国 浙江大学 10
8 圣保罗大学 15 巴西 华南农业大学 8
9 台湾大学 14 中国台湾 军事医学科学院 7
10 佐治亚大学 14 美国 复旦大学 7
Table 6 TOP10 Institutions in the research of coronavirus diagnosis (Global and China)
Fig.10 Cluster map of the research in coronavirus diagnosis
国家/地区 记录数量 占比 累计占比
美国 197 40.62% 40.62%
中国大陆 132 27.22% 58.97%
加拿大 32 6.60% 62.68%
英国 31 6.39% 67.84%
韩国 27 5.57% 71.96%
Table 7 TOP5 Countries/regions in the R&D of coronavirus vaccines
Fig.11 National/regional cooperation network for the research of coronavirus vaccines
排序 研究机构(全球) 论文量 国家(地区) 研究机构(中国) 论文量
1 纽约血液中心 33 美国 复旦大学 27
2 复旦大学 27 中国 中国科学院 24
3 中国科学院 24 中国 北京微生物流行病研究所 18
4 美国国立变态反应和传染病研究所 22 美国 中国农业科学研究院 14
5 北京微生物流行病研究所 18 中国 中国疾病防控中心 12
6 德克萨斯大学医学院分校 17 美国 香港大学 12
7 中国农业科学研究院 14 中国 四川大学 8
8 卡罗莱纳大学 13 美国 军事医学科学院 7
9 宾夕法尼亚大学 13 美国 台湾卫生研究院 6
10 中国疾病防控中心 12 中国 台湾大学 6
Table 8 TOP10 Institutions in the R&D of coronavirus vaccines (Global and China)
Fig.12 Cluster map of the research in coronavirus vaccines
国家/地区 发文数量 占比 累计占比
美国 252 32.27% 32.27%
中国大陆 195 24.97% 57.23%
日本 66 8.45% 65.69%
德国 62 7.94% 73.62%
加拿大 53 6.79% 80.41%
Table 9 TOP5 Countries/Regions in the R&D of coronavirus antibodies
Fig.13 National/regional cooperation network for the research of the coronavirus antibodies
排序 研究机构(全球) 发文数量 国家(地区) 研究机构(中国) 发文量
1 香港大学 44 中国香港 香港大学 44
2 美国国家过敏与传染病研究所 26 美国 复旦大学 23
3 复旦大学 23 中国内地 中国科学院 20
4 纽约血液中心 21 美国 中国医学科学院 18
5 中国科学院 20 中国内地 北京微生物流行病研究所 17
6 美国疾病预防控制中心 19 美国 北京协和医院医学院 15
7 荷兰乌特勒支大学 19 荷兰 中国疾病防控中心 12
8 中国医学科学院 18 中国内地 中国农业科学研究院 10
9 北京微生物流行病研究所 17 中国内地 军事医学科学院 9
10 美国国家癌症研究所 16 美国 北京大学 9
Table 10 TOP10 Institutions in the R&D of coronavirus antibodies (Global and China)
Fig.14 Self-correlation map of the research in coronavirus antibodies
Fig.15 Chronological research trend of the medicines against coronaviruses
国家/地区 发文数量 发文数量占比%
美国 368 34.11%
中国大陆 267 24.75%
中国台湾 78 7.23%
德国 76 7.04%
日本 65 6.02%
Table 11 TOP5 National/regional distribution of the research of the medicines against coronaviruses
排序 研究机构(全球) 论文量 国家(地区) 研究机构(中国) 论文量
1 中国科学院 53 中国内地 中国科学院 53
2 台湾中央研究院 34 中国台湾 台湾中央研究院 34
3 戈登生命科学研究所 27 美国 香港大学 27
4 香港大学 27 中国香港 上海交通大学 22
5 鲁汶大学 23 比利时 复旦大学 19
6 犹他州立大学 23 美国 台湾卫生研究院 18
7 上海交通大学 22 中国内地 台湾大学 17
8 复旦大学 19 中国内地 中国医学科学院 16
9 伊利诺伊大学 19 美国 中国医科大学 14
10 台湾卫生研究院 18 中国台湾 香港中文大学 14
Table 12 Top10 institutions in the research of the medicines against coronaviruses (Global and in China)
Fig.16 Cluster map of the research in the medicines against coronaviruses
[1]   Huang C, Wang Y, Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020, doi. org/10.1016/S0140-6736(20)30183-5.
doi: org/10.1016/S0140-6736(20)30183-5
[2]   World Health Organization. Novel coronavirus(2019-nCoV) situation report - 22. [2020-02-17]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200211-sitrep-22-ncov.pdf?sfvrsn=fb6d49b1_2.
[3]   Ceraolo C, Giorgi F M . Phylogenomic analysis of the 2019-nCoV coronavirus. Journal of Medical Virology, doi.org/10.1002/jmv.25700.
doi: doi.org/10.1002/jmv.25700
[4]   Wong M C, Javornik Cregeen S J, Ajami N J , et al. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv, 2020, doi.org/10.1101/2020.02.07.939207.
doi: doi.org/10.1101/2020.02.07.939207
[5]   Hui D S, I Azhar E, Madani T A , et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis, 2020,91(26):4-6.
[6]   Zhu N, Zhang D, Wang W , et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, DOI: 10.1056/NEJMoa2001017.
doi: 10.1056/NEJMoa2001017
[7]   Perlman S . Another decade, Another coronavirus. New England Journal of Medicine, 2020, DOI: 10.1056/NEJMe2001126.
doi: 10.1056/NEJMe2001126
[8]   Enserink M . Infectious diseases - WHO wants 21st-century reporting regs. Science, 2003,300(5620):717-7188.
[9]   Brian D A, Baric R S . Coronavirus Genome Structure and Replication. Curr Top Microbiol Immunol, 2005,287:1-30.
[10]   Woo P C Y, Lau S K P, Lam C S F , et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavir. Journal of Virology, 86(7):3995-4008.
[11]   中国疾病预防控制中心. 传染性非典型肺炎防治培训教材. 北京: 中国协和医科大学出版社, 2003.
[11]   Chinese Center for Disease Control and Prevention. Training materials for the prevention and treatment of infectious atypical pneumonia. Beijing: Peking Linion Medical College Press, 2003.
[12]   Wang G S, Deering C, Macke M , et al. Human coronavirus 229E infects polarized airway epithelia from the apical surface. Journal of Virology, 2000,74(19):9234-9239.
[13]   Cleri D J, Ricketti A J, Vernaleo J R . Severe acute respiratory syndrome (SARS). Infectious Disease Clinics of North America, 2010,24(1):175.
[14]   Paules C I, Marston H D, Fauci A S . Coronavirus infections-more than just the common cold. JAMA, 2020, doi: 10.1001/jama.2020.0757.
doi: 10.1001/jama.2020.0757
[15]   Arabi Y M, Balkhy H H, Hayden F G , et al. Middle East respiratory syndrome. New England Journal of Medicine, 2017,376(6):584-594.
[16]   Skariyachan S, Challapilli S B, Packirisamy S , et al. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections. Frontiers in Microbiology, 2019, DOI: 10.3389/fmicb.2019.00569.
doi: 10.3389/fmicb.2019.00569
[17]   World Health Organization. Emergencies: Novel coronavirus 2019. Geneva:WHO, 2020.
[18]   World Health Organization. WHO statement regarding cluster of pneumonia cases in Wuhan,China. Geneva:WHO, 2020.
[19]   World Health Organization. A research and development blueprint for action to prevent epidemics. Geneva:WHO, 2018.
[20]   Centers for Disease Control and Prevention. First travel-related case of 2019 novel coronavirus detected in United States CDC press release. Atlanta:CDC, 2020.
[21]   Bhatnagar P K, Das D, Suresh M R . Molecular targets for diagnostics and therapeutics of severe acute respiratory syndrome (SARS-CoV). Journal of Pharmacy and Pharmaceutical Sciences, 2008,11(2):1-13.
[22]   Jernigan J A, Low D E, Helfand R F . Combining clinical and epidemiologic features for early recognition of SARS. Emerging Infectious Diseases, 2004,10(2):327-333.
[23]   Chan K H, Poon L, Cheng V C C , et al. Detection of SARS coronavirus in patients with suspected SARS. Emerging Infectious Diseases, 2004,10(2):294-299.
[24]   Peiris J, Poon L . Detection of SARS coronavirus in humans and animals by conventional and quantitative (real time) reverse transcription polymerase chain reactions. Methods Mol Biol, 2008,454:61-72.
[25]   Emery S L, Erdman D D, Bowen M D , et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerging Infectious Diseases, 2004,10(2):311-316.
[26]   Omrani A S, Saad M M, Baig K , et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infectious Diseases, 2014,14(11):1090-1095.
[27]   Widagdo W, Okba N M A, Stalin Raj V , et al. MERS-coronavirus: From discovery to intervention. One Health, 2017,3:11-16.
[28]   Clarivate Analytics. DiseaseBriefing:Coronaviruses. [2020-02-17]. https://clarivate.com/wpcontent/uploads/dlm_uploads/2020/01/coronavirus-report-2.14.2020.pdf.
[29]   Pascal K E, Coleman C M, Mujica A O , et al. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. PNAS, 112(28):8738-8743.
[30]   李鹤, 谭晓川, 姜栋 , 等. 冠状病毒及其治疗药物研究进展. 中国药学杂志, 2020.[2020-02-17]. http://kns.cnki.net/kcms/detail/11.2162.r.20200212.2010.004.html.
[30]   Li H, Tan X C, Jiang D , et al. Coronavirus and its research progress. Chinese Pharmaceutical Journal, 2020.[2020-02-17]. http://kns.cnki.net/kcms/detail/11.2162.r.20200212.2010.004.html.
[31]   Guan Y . Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302(5643):276-278.
[32]   周浩, 龙北国, 张文炳 , 等. SARS冠状病毒S2基因原核表达及免疫学特性. 中国公共卫生, 2007(08):962-964.
[32]   Zhou H, Long B G, Zhang W B , et al. Prokaryotic expression of SARS-CoV S2 gene and preliminary study on its immune characteristics. Chinese Journal of Public Health, 2007(08):962-964.
[33]   Zhu Z, Chakraborti S, He Y , et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. PNAS, 2007,104(29):12123-12128.
[34]   Ying T, Du L, Ju T W , et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. Journal of Virology, 2014,88(14):7796-7805.
[35]   Ohnuma K, Haagmans B L, Hatano R , et al. Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. Journal of Virology, 2013,87(24):13892-13899.
[36]   Corti D, Zhao J, Pedotti M , et al. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. PNAS, 112(33):10473-10478.
[37]   Campanale M, Nucera E, Cesario V , et al. OC.04.1: Nickel free-diet enhances helicobacter pylori eradication rate. Digestive and Liver Disease, 2011,43:S125-S6.
[38]   Casadevall A, Pirofski L-A, Racaniello V . The Ebola epidemic crystallizes the potential of passive antibody therapy for infectious diseases. Plos Pathogens, 11(4):e1004717.
[39]   Zhou Y, Vedantham P, Lu K , et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Research, 2015,116:76-84.
[40]   Millet J K, Whittaker G R . Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Research, 2015,202:120-134.
[41]   Kilianski A, Baker S C . Cell-based antiviral screening against coronaviruses: developing virus-specific and broad-spectrum inhibitors. 2014,101(1):105-112.
[42]   Chu, M C . Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 59(3):252-256.
[43]   Chan J F-W, Yao Y, Yeung M-L , et al. Treatment with lopinavir/ritonavir or interferon-beta 1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. Journal of Infectious Diseases, 2015,212(12):1904-1913.
[44]   Arabi Y M, Alothman A, Balkhy H H , et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-beta 1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials, 2018,19.
[45]   Cinatl J, Morgenstern B, Bauer G , et al. Treatment of SARS with human interferons. Lancet, 2003,362(9380):293-294.
[46]   Tan E L C, Ooi E E, Lin C Y , et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerging Infectious Diseases, 2004,10(4):581-586.
[47]   Stockman L J, Bellamy R, Garner P . SARS: Systematic review of treatment effects. Plos Medicine, 2006,3(9):1525-1531.
[48]   Robinson W E Jr, Mcdougall B R, Essey R A . Inhibition of HIV reverse transcriptase inhibitor- and protease inhibitor-resistant molecular clones of HIV by the biological response modifier, Ampligen. Antiviral Res, 2000,46(1):A48.
[49]   Mitchell W, Blick G, Strayer D , et al. A phase IIB prospective, randomized, controlled study evaluating Ampligen during structured treatment interruption (STI) of HAART in HIV infection. Antiviral Res, 2003,57(3):A41.
[50]   Olsen A L, Morrey J D, Smee D F , et al. Correlation between breakdown of the blood-brain barrier and disease outcome of viral encephalitis in mice. Antiviral Res, 2007,75(2):104-112.
[51]   Dong S H, Wang X, Tian S C , et al. Arginine methyltransferase inhibitor 1 exhibits antitumor effects against cervical cancer in vitro and in vivo. Pharmazie, 2018,73(5):269-273.
[52]   Greffex Inc Publication. Texas A&M University System (TAMUS) and Greffex, Inc. sign agreement to collaborate on advanced process and manufacturing development.[2020-02-19]. https://www.greffex.com/texas-am-university-system-tamus-and-greffex-inc-sign-agreement-to-collaborate-on-advanced-process-and-manufacturing-development/.
[1] MA Li-li,YI Pan-pan,AO Ni-hua,JIAO Hong-tao,LEI Rui-peng,LIU Huan. A Study of Interdisciplinarity in Biosafety Research Based on Discipline Categories and Enrichment Analysis[J]. China Biotechnology, 2021, 41(12): 116-124.
[2] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[3] BAI Jing-yu,LIN Xiao-feng,YIN Zheng-qing. Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics[J]. China Biotechnology, 2020, 40(7): 100-109.
[4] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[5] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[6] ZHAO Ping,YANG Yan-ping. Patent Situation Analysis of Diagnosis Technology for Coronavirus Infection in Human[J]. China Biotechnology, 2020, 40(1-2): 51-56.
[7] LI Dong-qiao,LV Lu-cheng,YANG Yan-ping. The Research Status and Development Trend of Global Human Coronavirus Antibody Field[J]. China Biotechnology, 2020, 40(1-2): 65-70.
[8] CHENG Yong-qing,LIU Jin-yi,LIN Fu-Yu,TONG Mei. Novel Coronavirus Control and the Important Contribution of Interferon α1b[J]. China Biotechnology, 2020, 40(1-2): 71-77.
[9] WANG Guo-qiang,YU Yin-yin,ZENG Hua-hui,WANG Xu-dong,WU Yu-bin,SHANG Li-zhi,LI Yu-lin,ZHANG Yi-qing,ZHANG Xi-xi,ZHANG Zhen-qiang,WANG Yun-long. Preparation of Quality Control Materials for RT-PCR Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Based on MS2 Phage Virus-like Particles[J]. China Biotechnology, 2020, 40(12): 31-40.
[10] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[11] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[12] LIU Yao-zhou,MA Kai-yue,WEI Hao-ran,LIANG Teng-xiao,XU Yuan-hao,SONG Xiu-fang. Bibliometric Analysis of Gene Research in Alzheimer’s Disease[J]. China Biotechnology, 2020, 40(10): 112-121.
[13] SHEN Liang, TAN Wen-jie. Progress on the Technique and its Application of Reverse Genetics for Coronaviruses[J]. China Biotechnology, 2015, 35(2): 84-91.