Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (1-2): 124-132    DOI: 10.13523/j.cb.1904041
Orginal Article     
Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA
ZHU Heng1,2,ZHANG Ji-fu3,ZHANG Yun1,SUN Ai-jun1,HU Yun-feng1,**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120,China
Download: HTML   PDF(1323KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Polyethylene glycol diglycidyl ether (PEGDGE), a double-functional epoxy reagent, was used to covalently immobilize marine lipase through cross-linking amino carrier LX-1000EA. The treated carrier behaved good effect in the covalent immobilization of lipase. After single factor screening and orthogonal experiment, the best conditions of crosslinking and immobilized is 0.75% concentration of crosslinking agent, crosslinking temperature 35℃, crosslinking time 3h, carrier quantity 1.25g, pH 9.0 and immobilization temperature 55℃, immobilization time of 1h. The enzymatic properties of LX-1000EA- PEGDGE immobilized enzyme were compared with that of free enzyme and glutaraldehyde crosslinked immobilized enzyme LX-1000HA-GA. Compared with free enzymes, the optimal reaction temperature of LX-1000EA-PEGDGE immobilized enzyme did not change; and similar with LX-1000HA-GA, the optimal reaction pH increased from 7.0 to 8.0. Under the optimal condition, the enzyme activity of LX-1000EA-PEGDGE reached 78.84U/g. Immobilization changed the acid-base tolerance of lipase, and the thermal stability and the operation stability were improved compared with free enzyme and LX-1000HA-GA immobilized enzyme. The immobilized enzyme exhibited excellent thermal stability,retaining 90% initial enzyme activity after 3h incubation at 60℃; the residual enzyme activity retained 50% of its original activity after 5 times of operation; the residual enzyme activity retained 60% of its original activity after preserved for 30 days at 4℃. The new crosslinking agent PEGDGE and organic amino carrier were combined for the first time to immobilize lipase,which provided technical support for more effective immobilization methods. It was also found that the cross-linking agent had a great impact on the properties of the immobilized enzyme.



Key wordsPolyethylene glycol diglycidyl ether      Amino-carrier LX-1000EA      Lipase      Immobilization      Enzymatic property     
Received: 19 April 2019      Published: 27 March 2020
ZTFLH:  Q814  
Corresponding Authors: Yun-feng HU     E-mail: yunfeng.hu@scsio.ac.cn
Cite this article:

ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA. China Biotechnology, 2020, 40(1-2): 124-132.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1904041     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I1-2/124

Fig.1 Poly (ethylene glycol) diglycidyl ether
Fig.2 Preparation of immobilized lipase
序号 (A)载体
量(g)
(B)pH (C)温度
(℃)
(D)时间
(h)
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1
Table 1 Orthogonal experimental design
Fig.3 Cross-linking and immobilization conditions were determined by single-factor experiments (a) The effect of pH on the activity of immobilized enzymes (b) The effect of the concentration of the crosslinking agent on the activity of the immobilized enzyme (c) The effect of carrier volume on the activity of the immobilized enzyme (d) The effect of cross-linking temperature on the enzyme activity of the immobilized enzyme (e) The effect of immobilization temperature on the enzyme activity of the immobilized enzyme (f) The effect of crosslinking time on the activity of the immobilized enzyme (g) The effect of immobilization time on the activity of immobilized enzyme
序号 载体量(g)(A) pH(B) 温度(℃)(C) 时间(h)(D) 绝对酶活(U/g) 相对酶活(%) 酶活回收率(%)
1 1 7 50 1 23.602 1 36.549 05 8.544 912
2 1 8 55 2 37.849 4 58.673 3 27.461 8
3 1 9 60 3 22.419 3 34.724 0 3.893 0
4 1.25 7 55 3 48.602 1 75.322 6 16.265 1
5 1.25 8 50 1 49.220 4 76.242 8 16.275 3
6 1.25 9 50 2 60.080 6 93.068 8 21.726 4
7 1.5 7 60 2 29.435 4 45.599 9 7.366 67
8 1.5 8 50 3 45.430 1 70.416 0 11.071 6
9 1.5 9 55 1 64.569 8 100 32.365 1
K1 83.871 0 101.639 8 129.113 137.392 5
K2 157.903 2 132.5 151.022 127.365 6
K3 139.435 5 147.069 9 101.075 116.451 6
R 74.032 3 45.430 1 49.946 2 20.940 86
Table 2 Results and analysis of orthogonal experiments for lipase immobilized condition optimization
影响因素 A(载体量) B(pH) C(温度) D(时间)
K1 U(1+2+3) U(1+4+7) U(1+6+8) U(1+5+9)
K2 U(4+5+6) U(2+5+8) U(2+4+9) U(2+6+7)
K3 U(7+8+9) U(3+6+9) U(3+5+7) U(3+4+8)
R A因素下Umax-Umin B因素下Umax-Umin C因素下Umax-Umin D因素下Umax-Umin
Table 3 Calculation process
Fig.4 Comparison of the enzymatic properties of free enzyme and immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (a)Comparison of the optimal reaction temperature of free enzyme, immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (b) Comparison of the optimal pH of free enzyme, immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (c) Comparison of the pH stability of free enzyme, immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (d) Comparison of the thermal stability between free enzyme and immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (e) The operation stability of immobilized enzyme LX-1000EA-PEGDGE and LX-1000HA-GA (f) The storage stability of free enzyme and immobilized enzyme LX-1000EA-PEGDGE, LX-1000HA-GA at 4℃
[1]   成磊, 李泉, 葛保胜 , 等. 固定化脂肪酶催化花生油转酯化特性研究. 化学与生物工程, 2017,34(12):10-13.
[1]   Cheng L, Li Q, Ge B S , et al. Esterification of peanut oil catalyzed by immobilized lipase. Chemical and Biological Engineering, 2017,34(12):10-13.
[2]   舒正玉, 杨江科, 黄瑛 , 等. 生物柴油生产用脂肪酶资源及研发现状. 湖北农业科学, 2007,46(6):1027-1031.
[2]   Shu Z Y, Yang J K, Huang Y , et al. Lipase resources and development status in biodiesel production. Hubei Agricultural Science, 2007,46(6):1027-1031.
[3]   Noureddini H, Gao X, Philkana R S . Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology, 2005,96(7):769-777.
[4]   Kaieda M, Samukawa T, Kondo A , et al. Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 2001,91(1):5-12.
[5]   Talekar A, Ghodake V, Ghotage T , et al. Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology, 2012,123(2012):542-547.
[6]   Di Martino S, El-sheriff H, Diano N , et al. Urea removal from agricultural waste waters by means of urease immobilized on nylon membranes grafted with cyclohexyl-methacrylate. Applied Catalysis B: Environmental, 2004,46(3):613-629.
[7]   唐荣华, 段玮, 陈波 . 京尼平交联磁性壳聚糖微球的制备及其脂肪酶的固定化. 应用化学, 2013,30(8):922-926.
[7]   Tang R H, Duan W, Chen B . Preparation of cross-linked magnetic chitosan microspheres and immobilization of lipase. Applied Chemistry, 2013,30(8):922-926.
[8]   陈萧萧, 黄敏玲, 汪薇 , 等. 共固定化酶的制备及其在奶香基料制备中的应用. 食品工业, 2018,39(5):136-141.
[8]   Chen X X, Huang M L, Wang W , et al. Preparation of coimmobilized enzyme and its application in the preparation of milk-scented base material. Food Industry, 2018,39(5):136-141.
[9]   Ran J Y, Jia S Y, Liu Y , etc. A facile method for improving the covalent crosslinking adsorption process of catalase immobilization. Elsevier Ltd, 2010,101(16):6285-6290.
[10]   张媛媛, 刘均洪, 夏亚穆 . 吸附-聚合物修饰组合固定化Candida antarctica脂肪酶研究. 高校化学工程学报, 2010,24(2):252-257.
[10]   Zhang Y Y, Liu J H, Xia Y M . Study on the immobilized lipase of adsorption-polymer modified combination. Acta Chemologica Sinica, 2010,24(2):252-257.
[11]   Huang Z X, Cao S L, Xu P , et al. Preparation of a novel nanobiocatalyst by immobilizing penicillin acylase onto magnetic nanocrystalline cellulose and its use for efficient synthesis of cefaclor. Chemical Engineering Journal, 2018,346(2018):361-368.
[12]   孙培龙, 邵平, 孟祥河 , 等. 壳聚糖微球固定化脂肪酶的制备工艺及应用性质研究. 中国粮油学报, 2008,23(4):189-193.
[12]   Sun P L, Shao P, Meng X H , et al. Preparation and application of chitosan microsphere immobilized lipase. Chinese Journal of Cereals And Oils, 2008,23(4):189-193.
[13]   Melinda M, Kata H, Tibor S , et al. Sensing hydrogen peroxide by carbon nanotube/horseradish peroxidase bio-nanocomposite. Physica Status Solidi (b), 2013,250(12):2559-2563.
[14]   Sungur , Sibel , Akbulut , et al. Immobilization of β-galactosidase onto gelatin by glutaraldehyde and chromium(III) acetate. Journal of Chemical Technology and Biotechnology, 1994,59(3):303-306.
[15]   Bilal M, Iqbal H M N, Hu H B , et al. Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. Journal of Environmental Management, 2017,188(2018):137-143.
[16]   Bai Y X, li Y F, Wang M T . Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzyme and Microbial Technology, 2006,39(4):540-547.
[17]   薛屏, 卢冠忠, 郭杨龙 , 等. 含环氧基亲水性固定化青霉素酰化酶共聚载体的合成与性能研究. 高等学校化学学报, 2004,25(2):361-365.
[17]   Xue P, Lu G Z, Guo Y L , et al. Synthesis and performance of a copolymer carrier containing epoxy hydrophilic immobilized penicillin acylase. Acta Chem Sin, 2004,25(2):361-365.
[18]   张玉荣, 刘建勇, 王洁 . 乙二醇二缩水甘油醚交联羊毛角蛋白. 材料导报, 2013,27(21):230-232, 244.
[18]   Zhang Y R, Liu J Y, Wang J . glycol diglycidyl ether crosslinked lanolin. Materials Review, 2013,27(21):230-232, 244.
[19]   余舜雷 . 双交联剂体系氨基酰化酶交联聚集体的制备和研究. 天津:天津大学, 2012.
[19]   Yu S L . Preparation and study of aminoacylase cross-linked polymers in double-crosslinking agent system. Tianjin: Tianjin University, 2012.
[20]   徐珊, 李任强, 张继福 , 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶. 中国生物工程杂志, 2017,37(12):77-83.
[20]   Xu S, Li R Q, Zhang J F , et al. Glycidyl ether crosslinked alginate sodium carboxymethyl cellulose sodium immobilized lipase. China Biotechnology, 2017,37(12):77-83.
[21]   林海蛟, 王云鹏, 张云 , 等. 无机载体吸附-交联固定化海洋脂肪酶技术研究. 江西农业大学学报, 2019,41(1):186-196.
[21]   Lin H J, Wang Y P, Zhang Y , et al. Study on adsorption-cross-linking immobilization of marine lipase by inorganic carrier. Journal of Jiangxi Agricultural University, 2019,41(1):186-196.
[22]   钱明华, 张继福, 张云 , 等. 大孔树脂吸附-交联法固定脂肪酶. 华南农业大学学报, 2019,40(2):103-110.
[22]   Qian M H, Zhang J F, Zhang Y , et al. Immobilization of lipase by macroporous resin-crosslinking method. Journal of South China Agricultural University, 2019,40(2):103-110.
[23]   侯爱军, 徐冰斌, 梁亮 , 等. 改进铜皂分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
[23]   Hou A J, Xu B B, Liang L , et al. Determination of lipase activity by improved copper soap spectrophotometry. Leather Science and Engineering, 2011,21(1):22-27.
[24]   朱衡, 林海蛟, 张继福 , 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶. 中国生物工程杂志, 2019,39(7):71-78.
[24]   Zhu H, Lin H J, Zhang J F , et al. Covalent immobilization of marine Candida rugosa lipase using amino carrier. China Biotechnology, 2019,39(7):71-78.
[25]   徐珊, 李任强, 张继福 , 等. 孵育对环氧树脂固定化脂肪酶的稳定性研究. 华南农业大学学报, 2019,40(3):1-6. DOI: 10.7671/j.issn.1001-411X.201807037
doi: 10.7671/j.issn.1001-411X.201807037
[25]   Xu S, Li R Q, Zhang J F , et al. Effect of incubation on the stabilization of lipase immobilized by epoxy resin. Journal of South China Agricultural University, 2019,40(3):1-6. DOI: 10.7671/j.issn.1001-411X.201807037.
doi: 10.7671/j.issn.1001-411X.201807037
[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[3] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[4] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[5] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[6] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[7] ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells[J]. China Biotechnology, 2019, 39(11): 70-77.
[8] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[9] Qian-qian GUO,Deng-ke GAO,Xiao-tao CHENG,Fu-ping LU,Tanokura Masaru,Hui-min QIN. Heterologous Expression, Purification and Enzymatic Characterization of Cholesterol Oxidase PsCO4[J]. China Biotechnology, 2018, 38(6): 34-42.
[10] Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO. The Research Progress of Antibody Immobilization[J]. China Biotechnology, 2018, 38(4): 78-89.
[11] Hong-qiu SHI,Dai-ming ZHA,Bing-huo ZHANG,Han-quan LI. Research Advances in Whole-cell Lipases[J]. China Biotechnology, 2018, 38(11): 51-58.
[12] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[13] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[14] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.
[15] CAO Ying-ying, DENG Dun, ZHANG Yun, SUN Ai-jun, XIA Fang-liang, HU Yun-feng. Cloning, Expression and Characterization of a Novel Psychrophile Lipase from the Deep Sea of the South China Sea[J]. China Biotechnology, 2016, 36(3): 43-52.