Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 62-69    DOI: 10.13523/j.cb.20191107
    
Development of a Multiplex Liquidchip Assay for Rapid Identification of Fox and Mink Ingredients
CHEN Ru1,**(),DUAN Yan-yu1,GAO Xiao-bo2,LIU Zhi-ling1,YANG Jing1,MEI Ming-zhu1,TAN Xin3,LUO Hai-yan2
1 Technical Center, Guangzhou Customs District People’s Republic of China, Guangzhou 510623, China;
2 National Research Institute for Family Planning, Beijing 100081, China
3 School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
Download: HTML   PDF(602KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel nucleic acid detection method, based on the xMAP (flexible multi-analyte profiling) technology platform, was developed for high-throughput and simultaneous identification of fox and mink ingredients in products of animal origin. A duplex xMAP assay was established, the primers and probes were designed targeting a fox mitochondrial D-loop gene or a mink mitochondrial cytochrome b gene. The probes were incorporated with locked nucleic acids to improve detection efficiency. The assay accurately identified fox and mink DNA, without cross reactions with DNA samples of eighteen nontarget animal species. The LOD on purified fox and mink DNA was evaluated as 2.8pg/μl and 0.9pg/μl, respectively. The detection sensitivity on samples of experimental meat mixtures was demonstrated to be 0.05% (m/m). The assay successfully detected 32 mocked positive DNA sample of food and feeds, which each was made by adding fox DNA or mink DNA at 1% (V/V) proportion of the same concentration. In conclusion, the duplex xMAP assay provided rapid identification of fox and mink ingredients with high specificity and high sensitivity. The technique is suitable to be applied in food and feeds quality assurance systems and safety inspections.



Key wordsxMAP technology      Fox ingredient      Mink ingredient      Locked nucleic acid (LNA)     
Received: 09 April 2019      Published: 17 December 2019
ZTFLH:  Q819  
Corresponding Authors: Ru CHEN     E-mail: gd_chenr@sina.com
Cite this article:

CHEN Ru,DUAN Yan-yu,GAO Xiao-bo,LIU Zhi-ling,YANG Jing,MEI Ming-zhu,TAN Xin,LUO Hai-yan. Development of a Multiplex Liquidchip Assay for Rapid Identification of Fox and Mink Ingredients. China Biotechnology, 2019, 39(11): 62-69.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191107     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/62

物种 寡核苷酸与序列(5'- 3') 扩增产物分子量(bp)
狐狸 上游引物: GTGCATTACTGCTATG 118
下游引物: biotin-ACGTGCAGTCATGTATG
探针: AmM-GACAT(A/G)CTA+TGTTTA+ATCTTACA*
水貂 上游引物: AACCAAGAACATACTCAC 186
下游引物: biotin-CTTATCTCCTCTTGCCTT
探针: AmM-CAAG+CAA+CTCATCCA*
Table 1 Primers and probes used in the duplex xMAP assay
Fig.1 Specificity detection results of the duplex xMAP assay MFI: Median fluorescent intensity
Fig.2 Results of the duplex xMAP assay sensitivity detection at the LOD point MFI: Median fluorescent intensity
检测值 检测目标 样品
1%* 0.1%* 0.05%* Beef Blank control
MFI (CV%) 狐狸成分 1 833(10%) 493 (16%) 192 (12%) 17 16
水貂成分 2 585 (5%) 880 (14%) 391(23%) 57 30
Table 2 Detection of the experimental binary meat samples by the duplex xMAP assay
样品 数量 检测结果(MFI值)
狐狸成分 水貂成分
原样品 模拟阳性样品 原样品 模拟阳性样品
食品 8 14~35 154~643 15~34 353~624
饲料 8 5~29 199~435 8~27 476~713
空白对照 3 11~26 7~33
Table 3 Detections of mocked positive food and feed DNA samples by the duplex xMAP assay
[1]   刘艳艳, 李会荣, 胡悦 , 等. 饲料中狐狸、水貂、貉子和狗源性的五重实时荧光PCR检测方法的建立. 中国生物工程杂志, 2017,37(12):67-76.
[1]   Liu Y Y, Li H R, Hu Y , et al. Multiplex fluorescent real-time PCR detection of fox, mink, raccoon and dog derived materials in feedstuff. China Biotechnology, 2017,37(12):67-76.
[2]   刘少宁, 陈智, 张志民 , 等. 鉴别绵羊肉中狐狸源性成分的环介导等温扩增检测方法的建立. 中国食品卫生杂志, 2016,28(1):75-78.
[2]   Liu S N, Chen Z, Zhang Z M , et al. Development of a LAMP method for the identification of fox-derived ingredients in mutton. Chinese Journal of Food Hygiene, 2016,28(1):75-78.
[3]   Dalmasso A, Fontanella E, Piatti P , et al. A multiplex PCR assay for the identification of animal species in feedstuffs. Molecular and Cellular Probes, 2004,18(2):81-87.
doi: 10.1016/j.mcp.2003.09.006
[4]   Cawthraw S, Saunders G C, Martin T C , et al. Real-time PCR detection and identification of prohibited mammalian and avian material in animal feed. Journal of Food Protection, 2009,72(5):1055-1062.
doi: 10.4315/0362-028x-72.5.1055 pmid: 19517734
[5]   Floren C, Wiedemann I, Brenig B , et al. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chemistry, 2015,173:1054-1058.
doi: 10.1016/j.foodchem.2014.10.138 pmid: 25466124
[6]   Lin C C, Fung L L, Chan P K , et al. A rapid low-cost high-density DNAbased multi-detection test for routine inspection of meat species. Meat Science, 2014,96(2):922-929.
doi: 10.1016/j.meatsci.2013.09.001
[7]   Bertolini F, Ghionda M C, D’alessandro E , et al. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. PLoS One, 2015,10(4):e0121701.DOI: 10.1371/journal.pone. 0121701.
doi: 10.1371/journal.pone. 0121701 pmid: 25923709
[8]   李通, 尹艳, 袁其朋 , 等. 运用PCR方法鉴别四种犬科动物的研究. 食品工业科技, 2013,34(17):146-149.
[8]   Li T, Yin Y, Yuan Q P , et al. Research and application of PCR method for identification of four Canidae species. Science and Technology Food Industry, 2013,34(17):146-149.
[9]   卞如如, 范阳阳, 刘艳艳 , 等. 一种驴和马及狐狸源性成分快速检测方法的研究. 中国畜牧杂志, 2017,53(1):100-104.
[9]   Bian R R, Fan Y Y, Liu Y Y , et al. Research of a method for rapid detection of donkey, horse and fox ingredients. Chinese Journal of Animal Science, 2017,53(1):100-104.
[10]   贾冰凝, 何微, 岳苑 , 等. 实时定量荧光PCR法检测食品中狐狸源性成分. 科技创新导报, 2017,14(36):109-111.
[10]   Jia B N, He H, Yue Y , et al. Real-time PCR for detection of fox ingredient in food. Science and Technology Innovation Herald, 2017,14(36):109-111.
[11]   Dunbar S A . Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Chimica Acta, 2006,363(1-2):71-82.
doi: 10.1016/j.cccn.2005.06.023 pmid: 16102740
[12]   Reslova N, Michna V, Kasny M , et al. xMAP technology: applications in detection of pathogens. Frontiers in Microbiology, 2017,8:55.
doi: 10.3389/fmicb.2017.00055 pmid: 28179899
[13]   Wu Y, Yang Y, Liu M , et al. A 15-plex/xMAP methods to detect 15 animal ingredients by suspension array system coupled with multifluorescent magnetic beads. Journal of AOAC International, 2016,99(3):1-10.
doi: 10.5740/jaoacint.15-0264
[14]   Ponzoni E, Breviario D, Mautino A , et al. A multiplex, bead-based assay for profiling plant-derived components in complex food matrixes. Analytical and Bioanalytical Chemistry, 2013,405(30):9849-9858.
doi: 10.1007/s00216-013-7434-8 pmid: 24190615
[15]   李生茂, 徐祥, 梁华平 , 等. 锁核酸研究进展. 生理科学进展, 2003,34(4):319-323.
pmid: 14992013
[15]   Li S M, Xu X, Liang H P , et al. Progress in locked nucleic acid research. Progress in Physiological Science, 2003,34(4):319-323.
pmid: 14992013
[16]   Vester B, Wenge J . LNA (locked nucleic acid): high affinity targeting of complementary RNA and DNA. Biochemistry, 2004,43(42):13233-13241.
doi: 10.1021/bi0485732 pmid: 15491130
[17]   Kaur H, Arora A, Wengel J , et al. Thermodynamic, counterion and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry, 2006,45(23):7347-7355.
doi: 10.1021/bi060307w pmid: 16752924
[18]   Ballantyne K N, van Oorschot R A H, Mitchell R J . Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics, 2008,91(3):301-305.
doi: 10.1016/j.ygeno.2007.10.016 pmid: 18164179
[19]   秦智锋, 刘建利, 卢体康 , 等. 基于锁核酸探针的双重荧光实时RT-PCR检测方法鉴别新城疫中强毒株与弱毒株. 中国预防兽医学报, 2012,34(9):719-723.
[19]   Qin Z F, Liu J L, Lu T K , et al. Development of duplex locked nucleic acid real-time RT-PCR to differentiate the pathovars of Newcastle disease virus. Chinese Journal of Preventive Veterinary Medicine, 2012,34(9):719-723.
[20]   许如苏, 纪玲珍, 黄帅 , 等. 应用多重Taqman -LNA 荧光PCR同时检测肉制品中猪鸡鸭源性成分. 中国兽医杂志, 2017,53(12):81-84.
[20]   Xu R S, Ji L Z, Huang S , et al. Development of multiplex Taqman-LNA real-time PCR for detecting pork, chicken and duck-derived ingredients in meat products. Chinese Journal of Veterinary Medicine, 2017,53(12):81-84.
[1] DA Fei, HOU Zheng, MENG Jing-ru, JIA Min, LUO Xiao-xing. Blocking Methicilli-Resistant Staphylococcus Aureus Agr Quorom Sensing System by Antisense LNA[J]. China Biotechnology, 2013, 33(5): 1-6.