Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (9): 98-102    DOI: 10.13523/j.cb.20190913
Orginal Article     
Detection and the Clinical Significance of Molecular Markers in the Diagnosis and Treatment of Leukemia
QIN Ya-zhen
Peking University People’s Hospital, Peking University Institute of Hematology,National Clinical Research Center for Hematologic Disease, Beijing 100044, China
Download: HTML   PDF(378KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Precision treatment is the present therapeutic strategy to leukemia, and accurate diagnosis and prognostic stratification is the basis. At present, leukemia typing is based on the combination of morphology, immunotyping, cytogenetics and molecular biology. In the past decades, due to the identification of a lot of new molecular abnormalities, molecular detection is becoming more and more important in the diagnosis and treatment of leukemia. The basic techniques for molecular detection are PCR and sequencing. The common leukemia related molecular markers include fusion gene, gene mutation and gene overexpression, and they have shown important clinical significances in the diagnosis, the selection of target therapy, the monitoring of measurable residual disease (MRD) and prognosis.



Key wordsMolecular marker      Leukemia      Clinical significance     
Received: 22 August 2019      Published: 20 September 2019
ZTFLH:  Q819  
Cite this article:

QIN Ya-zhen. Detection and the Clinical Significance of Molecular Markers in the Diagnosis and Treatment of Leukemia. China Biotechnology, 2019, 39(9): 98-102.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190913     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I9/98

[1]   Baccarani M, Deininger MW, Rosti G , et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood, 2013,122(6):872-884.
doi: 10.1182/blood-2013-05-501569
[2]   D?hner H, Estey E, Grimwade D , et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017,129(4):424-447.
[3]   Tallman M S, Wang E S, Altman J K , et al. Acute myeloid leukemia, Version 3.2019, NCCN clinical practice guidelines in oncology. Journal of National Comprehensive Cancer Network, 2019,17(6):721-749.
[4]   中华医学会血液学分会实验诊断学组, 中国慢性髓性白血病联盟专家组. 中国慢性髓性白血病诊疗监测规范(2014年版). 中华血液学杂志, 2014,35(8):781-784.
[4]   Chinese Society of Hematology, Chinese Medical Association, Chinese CML Committee . Guideline for the diagnosis and management in the disease monitoring of patients with chronic myeloid leukemia in China (2014). Chinese Journal of Hematology, 2014,35(8):781-784.
[5]   中华医学会血液学分会白血病淋巴瘤学组. 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2017年版). 中华血液学杂志, 2017,38(3):177-182.
[5]   Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese Medical Association . Chinese guidelines for diagnosis and treatment of adult acute myeloid leukemia (not APL)(2017). Chinese Journal of Hematologyi, 2017,38(3):177-182.
[6]   秦亚溱, 黄晓军 . 新一代检测技术在白血病精准医疗中的应用及挑战. 中华血液学杂志, 2019,40(5):353-357.
[6]   Qin Y Z, Huang X J . Application and challenges of the new generation detection technologies in precision medicine for leukemia, Chinese Journal of Hematology, 2019,40(5):353-357.
[7]   Thiede C, Koch S, Creutzig E , et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood, 2006,107(10):4011-4020.
[8]   Hoffbrand A V, Higgs D R, Keeling D M , et al. WHO classification of tumors of haematopoietic and lymphoid tissues. 4th ed. Lyon: WHO Press, 2008: 110-123.
[9]   Arber D A, Orazi A, Hasserjian R , et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016,127(20):2391-2405.
[10]   Bj?rkholm M, Ohm L, Eloranta S , et al. Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008. J Clin Oncol, 2011,29(18):2514-2520.
doi: 10.1200/JCO.2011.34.7146
[11]   Saussele S, Richter J, Guilhot J , et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol, 2018,19(6):747-757.
[12]   Soverini S, Hochhaus A, Nicolini F E , et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood, 2011,118(5):1208-1215.
doi: 10.1182/blood-2010-12-326405
[13]   Winer E S, Stone R M . Novel therapy in acute myeloid leukemia (AML): moving toward targeted approaches. Ther Adv Hematol, 2019, Doi: 10.1177/2040620719860645.
doi: 10.1177/2040620719860645
[14]   秦亚溱, 李金兰, 主鸿鹄 , 等. 实时定量R T-PC R技术测定初治白血病患者常见融合基因转录子水平及其标准化的探讨. 中华血液学杂志, 2007,28(7):353-357.
[14]   Qin Y Z, Li J L, Zhu H H , et al. Detection of common fusion transcript levels in untreated leukemia patients by real-time quantitative RT-PCR technique. Chinese Journal of Hematology, 2007,28(7):353-357.
[15]   Hughes T, Deininger M, Hochhaus A , et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, 2006,108(1):28-37.
[16]   秦亚溱, 马道新, 王云贵 , 等. 转换国际标准化的 BCR-ABL(P210)转录本水平的转换系数多中心再确认研究. 中华血液学杂志, 2015,36(10):814-817.
[16]   Qin Y Z, Ma D X, Wang Y G , et al. A multicenter study on the revalidation of validated conversion factor for the conversion of BCR-ABL (P210) transcript levels to the international scale in chronic myeloid leukemia. Chinese Journal of Hematology, 2015,36(10):814-817.
[17]   Alvarnas J C, Brown P A, Aoun P , et al. Acute lymphoblastic leukemia,Version 2. 2015: clinical practice guidelines in oncology. Journal of The National Comprehensive Cancer Network, 2015,13(10):1240-1279.
[18]   Yin J A , O’Brien M A, Hills R K , et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood, 2012,120(14):2826-2835.
doi: 10.1182/blood-2012-06-435669
[19]   Zhu H H, Zhang X H, Qin Y Z , et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood, 2013,121(20):4056-4062.
doi: 10.1182/blood-2012-11-468348
[20]   Qin Y Z, Wang Y, Xu L P , et al. The dynamics of RUNX1-RUNX1T1 transcript levels after allogeneic hematopoietic stem cell transplantation predict relapse in patients with t(8;21) acute myeloid leukemia. J Hematol Oncol, 2017,10(1):44.
[1] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[2] WANG Qian,CHEN Su-ning. The Genetics of Mixed-phenotype Acute Leukemia[J]. China Biotechnology, 2019, 39(9): 91-97.
[3] HE Ling-ling,LUO Ting-ting,CHANG Yan,WANG Ya-zhe,YUAN Xiao-ying,SHI Wei-hua,LAI Yue-yun,SHI Hong-xia,QIN Ya-zhen,HUANG Xiao-jun,LIU Yan-rong. Analysis on the Laboratory Examination Characteristics in 28 Patients with Acute Megakaryoblastic Leukemia[J]. China Biotechnology, 2019, 39(9): 2-10.
[4] ZHAO Si-shu,LIU Lu,LIU Fang,QIU Hai-rong,FAN Lei,LI Jian-yong,WU Yu-jie. Diagnostic Value of CD11c Antigen in Patients with Chronic Lymphocytic Leukemia[J]. China Biotechnology, 2019, 39(9): 19-24.
[5] ZHANG Jian,JIANG Zhi-ping,XU Ping,HE Qun,WANG Qing,ZHU Yan,ZHAO Xie-lan. Study on Monitoring of Imatinib Serum Level Guides Management of Chronic Myelogenous Leukemia Patients[J]. China Biotechnology, 2019, 39(9): 25-32.
[6] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[7] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[8] ZHANG He-ming, CAI Chu-fan, LIU Yang, GAN Long-zhan, JIAO Xue-miao, TIAN Yong-qiang. Soluble Expression of Human Leukemia Inhibitory Factor in Prokaryotic Cells and Its Purification[J]. China Biotechnology, 2017, 37(9): 7-14.
[9] MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers[J]. China Biotechnology, 2017, 37(3): 83-91.
[10] ZENG Jie. Development and Application of L-Asparaginase with Better Performance and Advances in Recombinant Expression[J]. China Biotechnology, 2017, 37(11): 123-131.
[11] HUANG Chen, WANG Jia-rong, YANG Ji-cheng, SHENG Wei-hua, MIAO Jing-cheng. The Inhibition of Ad. RGD-ING4-PTEN on MEG01 Human Leukemia Cell[J]. China Biotechnology, 2014, 34(3): 9-17.
[12] ZHANG Wen-jing, LI Yong-peng, LI Ji-lin, ZHANG Yan-ming. Advances in Barley Genome and Molecular Breeding[J]. China Biotechnology, 2012, 32(05): 107-112.
[13] SHAO Hui-yuan, MIAO Zong-yu, QIN Feng-xian, CHEN Xian-chun, TAN Shi, ZHONG Liang, ZHANG Ling. NPM1 Mutations in K562 Cells Inhibits Cell Proliferation and Invasion in Vitro[J]. China Biotechnology, 2010, 30(11): 6-10.
[14] LI Beng-Fa, LIU Hui, DAN Ge-Qin. Localization of Histone Acetyltransferase PCAF in Nuclear Dot 10 Through Its Interaction with PML Protein[J]. China Biotechnology, 2010, 30(06): 21-27.
[15] YANG Lin- Luo-Jian-Min- Liu-Xiao-Jun- Cheng-Zhi-Yong- Wen-Shu-Feng- Du-Hang-Yan- Yang-Xiao-Yang- Wu-Hua-Wen. Construction, Identification and Expression of Recombinant Eukaryotic Vector pCAG-IRES-SHIP-GFP on Porliferation of Leukemia Cell Line K562[J]. China Biotechnology, 2009, 29(06): 14-19.