Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 32-38    DOI: 10.13523/j.cb.20190705
    
Effects of Thermal Oxidative Aging on Wheat Straw / Rubber Biomass Imitation Rattan
Shi-qiang ZHU1,Xiang-an LU1,2,Chun-han YU1,Yi-fan DAI1,Yue QIU1,Ji-shuang CHEN1,*()
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Chin
2 Guangling College of Yangzhou University, Yangzhou 225000, China
Download: HTML   PDF(1195KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Straw plastic composite (SPC) is a novel wood - plastic material in which wood fibers are replaced by straw fibers.Wheat straw / rubber biomass imitation rattan from wheat straw, rubber and low density polyethylene( LDPE) was prepared. The changes of mechanical properties and microstructures were investigated in the period of thermal-oxidative aging at 100℃ for 60d. The results showed that the addition of wheat straw fiber will reduce the mechanical properties while the rubber can enhance the elongation break. During the aging process, cracks appearing on the surface of rattan cut down mechanical properties. And the losing of functional groups between the surface of straw fiber and PE caused the reduction of combining ability. In combination with the kinetic model, the degradation occurred rapidly in the beginning of the 15 days with the aging coefficient up to 70% and kept a low rate in the rest of the experiment. Furthermore, the addition of rubber could slow down the aging rate of rattan.



Key wordsWheat straw      Rubber      Thermal oxidative aging      Imitation rattan      Composites     
Received: 30 November 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Ji-shuang CHEN     E-mail: biochenjs@njtech.edu.cn
Cite this article:

Shi-qiang ZHU,Xiang-an LU,Chun-han YU,Yi-fan DAI,Yue QIU,Ji-shuang CHEN. Effects of Thermal Oxidative Aging on Wheat Straw / Rubber Biomass Imitation Rattan. China Biotechnology, 2019, 39(7): 32-38.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190705     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/32

编号 改性麦秸秆(%) 橡胶(%) LDPE (%)
1 10 3 87
2 12.5 0 87.5
3 15 0 85
4 10 5 85
5 10 7 83
6 10 0 90
Table 1 Composite formulation experiment
Fig.1 Infrared spectrum of different aging time of composite materials
Fig.2 Scanning electron micrograph of wheat straw/rubber imitation rattan
秸秆含量(%) 拉伸强度(MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
10 10.11 10.51 11.12 11.37 11.66 11.31 11.15 12.73 脆断 脆断
12.5 9.47 11.51 11.37 11.14 11.48 12.21 脆断 脆断 脆断 脆断
15 9.09 11.25 11.4 11.29 11.81 12.41 脆断 脆断 脆断 脆断
Table 2 Variation of tensile strength of imitation rattan with different wheat straw powder content with aging time
Fig.3 Variation of tensile strength of imitation rattan with different wheat straw powder content with aging time
橡胶含量(%) 拉伸强度 (MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
0 10.1 10.51 11.12 11.37 11.66 11.31 11.15 12.73 脆断 脆断
3 9.68 12.01 11.78 11.55 11.83 12.56 13.28 14.4 13.71 13.3
5 10.5 11.18 11.71 11.3 12.3 13.57 13.77 15.05 14.23 14.04
7 10.5 11.1 11.42 11.31 13.8 13.92 13.97 14.7 13.82 13.79
Table 3 Effect of rubber content on tensile strength of imitation rattan (WS content 10%)
Fig.4 Tensile strength of different rubber content imitation rattan with aging time (WS content 10%)
秸秆含量(%) 断裂伸长率(%)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
10 335 137 50 35 13 6 5 3 脆断 脆断
12.5 345 62 18 21 17 11 脆断 脆断 脆断 脆断
15 242 58 29 19 15 18 脆断 脆断 脆断 脆断
Table 4 Variation of elongation at break of different straw stalks of imitation rattan with aging time
Fig.5 Change of elongation at break of imitation rattan with different wheat straw powder content with aging time
Fig.6 The elongation at break of different rubber content imitation rattan changes with aging time (WS content 10%)
橡胶含量(%) 拉伸强度 (MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
0 335 137 50 35 13 6 5 3 脆断 脆断
3 316 167 86 39 18 10 6 5 3 3
5 443 254 135 69 39 23 16 15 13 10
7 449 382 324 230 187 146 48 27 24 20
Table 5 Effect of rubber content on tensile strength of imitation rattan (WS content 10%)
Fig.7 Relationship between -lne and time under different modified wheat straw content
Fig.8 Relationship between -lne and time under different rubber content conditions
[1]   王慷林 . 中国棕榈藤资源及其分布特征研究. 植物科学学报, 2015,33(3):320-325.
doi: 10.11913/PSJ.2095-0837.2015.30320
[1]   Wang K L . Study on the resources and distribution characteristics of Chinese palm rattan. Journal of Plant Science, 2015,33(3):320-325.
doi: 10.11913/PSJ.2095-0837.2015.30320
[2]   许煌灿, 尹光天, 孙清鹏 , 等. 棕榈藤的研究和发展. 林业科学, 2002,38(2):135-143.
doi: 10.11707/j.1001-7488.20020223
[2]   Xu H C, Yin G T, Sun Q P , et al. Research and development of palm rattan. Forestry Science, 2002,38(2):135-143.
doi: 10.11707/j.1001-7488.20020223
[3]   Mohd Ali A R, Mlhmod A L, Khoo K C . Physical properties,fibre dimensions and proximate chemical analysis of Malaysian rattans.[ 2018-09-30]. http://agris.fao.org/agris-search/search.do?recordID=TH2001001425.
[4]   Siebert S F. The nature and culture of rattan:reflections on vanishing life in the forests of southeast asia. Hawaii: University of Hawaii Press, 2012.
[5]   Lu X, Liu Y, Ni Y , et al. Study on the folding of imitation rattan with wheat straw fibers. Journal of Biobased Materials & Bioenergy, 2017,11(4):303-307.
[6]   沈明华 . 用PP/App生产塑料仿藤席的工艺探讨. 中国塑料, 1992,6(3):195-197.
[6]   Shen M H, . Discussion on the process of producing plastic imitation rattan mats with PP/App. China Plastics, 1992,6(3):195-197.
[7]   黎明 . 一种多用途纸藤:中国,CN202644278U, 2013-01-02. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GHG1ABA9FEB6BDA9IEF7HAA5FAA9BBA7ADA9HHF9FDE9ECB.
[7]   Li M. A multi-purpose paper rattan: China, CN202644278U, 2013-01-02. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GHG1ABA9FEB6BDA9IEF7HAA5FAA9BBA7ADA9HHF9FDE9ECB.
[8]   程相峰 . 循环再利用聚丙烯热氧老化性能的研究. 大连:大连工业大学, 2016.
[8]   Cheng X F . Study on Recycled Polypropylene Thermal Aging Properties. Dalian:Dalian University of Technology, 2016.
[9]   周勇 . 高分子材料的老化研究. 国外塑料, 2012,30(1):35-41.
[9]   Zhou Y . Aging studies of macromolecule. World Plastics, 2012,30(1):35-41.
[10]   王荣华, 李晖, 孙岩 , 等. 橡胶材料加速老化研究现状及发展趋势. 装备环境工程, 2013,10(4):66-70.
[10]   Wang R H, LI H, Sun Y , et al. Research status and development trend of accelerated aging of rubber materials, Equipment Environmental Engineering, 2013,10(4):66-70.
[11]   刘景军, 李效玉 . 高分子材料的环境行为与老化机理研究进展. 高分子通报, 2005,3:62-69.
[11]   Liu J J, Li X Y . Advances in research on environmental behavior and aging mechanism of polymer materials. Polymer Bulletin, 2005,3:62-69.
[12]   王思静, 熊金平, 左禹 . 橡胶老化机理与研究方法进展. 合成材料老化与应用, 2009,38(2):23-32.
[12]   Wang S J, Xiong J P, Zuo Y . Study on aging mechanism of rubbers. Aging and Application Of Synthetic Materials, 2009,38(2):23-32.
[13]   曾建, 王苓 . 热处理对高密度聚乙烯结晶度及力学性能的影响. 塑料制造, 2016,5:48-52.
[13]   Zeng J, Wang L . Effect of Heat treatment on crystallinity and mechanical property of HDPE. Plastic Manufacturing, 2016,5:48-52.
[14]   宋海硕, 王蒙, 鲁学峰 , 等. 热氧老化对长玻纤增强尼龙10T复合材料静动态力学性能的影响. 复合材料学报, 2016,33(10):2158-2165.
[14]   Song H S, WANG M, LU X F , et al. Effects of thermal oxidative aging on sialic and dynamic mechanical properties of long glass fiber reinforced nylon 10T compositcs. Ada Matcriac Compositac Sinica, 2016,33(10):2158-2165.
[15]   刘振宇, 熊玉竹, 梅文杰 . 高分子材料银纹研究. 中国塑料, 2013,27(6):19-22.
[15]   Liu Z Y, Xiong Y Z, Mei W J . Studies on crazes inside polymeric materials. Chinese Plastic, 2013,27(6):19-22.