Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 97-104    DOI: 10.13523/j.cb.20190312
    
Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines
Jia-yue XU,Zi-qian LI,Ge ZHANG()
School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
Download: HTML   PDF(609KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Diseases such as dengue fever caused by denugue virus lead to considerable economic, medical and social burdens every year, which seriously threaten the health of human life. Among the various dengue virus vaccines currently under study, the 3'UTRΔ30 series of live attenuated vaccines prepared by reverse genetics have shown good protection in clinical trials because of their good immunogenicity, high titer and low cost. As a consequence, research on this kind of vaccine advances fast. The 3'UTRΔ30 quadruple vaccine, one of the most promising dengue attenuated inactivated vaccines today, which can produce balanced immune protection against the four serotypes of dengue virus, is in phase III clinical trials, showing strong efficacy and few adverse reactions. It is expected to be on the market after the end of the follow-up period. In order to gain a deeper understanding of the 3'UTRΔ30 series vaccines, the origin, preparation methods and clinical research are mainly focused on.



Key wordsDengue      virus      3'UTRΔ30      vaccine      Preparation      Clinical      research     
Received: 20 September 2018      Published: 12 April 2019
ZTFLH:  R186  
Corresponding Authors: Ge ZHANG     E-mail: zhangge@mail.sysu.edu.cn
Cite this article:

Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines. China Biotechnology, 2019, 39(3): 97-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190312     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/97

Fig.1 The gene structure of DENV[1]
Fig.2 The partial structure of rDENV4Δ30 and rDENV1Δ30[9]
试验疫苗 时间 试验分期 试验地点 试验对象 接种方式&剂量 参考文献
rDENV4Δ30 1996 临床前 美国
NIAID
恒河猴 单次免疫;s.c.1); 剂量(1×105 PFU) [11]
2001 临床I期 美国
CIR
健康志愿者20人 单次免疫;s.c.;剂量(1×105 PFU/0.5ml) [12][14]
2005 临床II期 美国
NIAID
健康志愿者5人 单次免疫;s.c.;剂量递减(1×103 PFU,1×102 PFU,10 PFU) [13]
rDENV4Δ30-200,201 2008 临床I期 美国
NIAID
健康志愿者20人 单次免疫;s.c.;剂量(1×105 PFU/0.5ml) [15]
rDENV4Δ30-4995 2009 临床I期 美国
NIAID
健康志愿者20人 单次免疫;s.c.;剂量(1×105 PFU/0.5ml) [16]
rDENV1Δ30 2003 临床前 美国
NIAID
恒河猴 单次免疫;s.c.;剂量(1×105 PFU/0.5ml) [17]
2006 临床I期 美国
NIAID
健康志愿者28人 单次免疫;s.c.;剂量(1×103 PFU/0.5ml) [18]
rDENV2/4Δ30 2003 临床前 美国
NIAID
小鼠,恒河猴等 单次免疫;s.c.;剂量(小鼠1×104 PFU,猴1×105 PFU) [19]
2006 临床I期 美国
NIAID
健康志愿者20人 单次免疫;s.c.;剂量(1×103 PFU/0.5ml) [21]
rDENV3/4Δ30 2004 临床前 美国
NIAID
小鼠,恒河猴等 单次免疫;s.c.;剂量(小鼠1×104 PFU,猴1×105 PFU) [20]
rDENV3Δ30/31 2011 临床I期 美国
NIAID
健康志愿者20人 单次免疫;s.c.;剂量(1×103 PFU) [22]
rDENV3-3'D4Δ30 2011 临床I期 美国
NIAID
健康志愿者20人 单次免疫;s.c.;剂量(1×103 PFU) [22]
TV001TV004 2013 临床I期 美国
NIAID
每种疫苗健康志愿者28人,共112人 单次免疫;s.c.;剂量(1×103 PFU/0.5ml) [23]
TV003、TV005 2015 临床I期 美国
NIAID
健康志愿者共168人 6个月后加强免疫;s.c.;剂量(1×103 PFU) [24]
TV003 2016 临床I期 美国
NIAID
健康志愿者48人 12个月后加强免疫;s.c.;剂量(1×103 PFU) [25]
2016 临床II期 美国
NIAID
健康志愿者48人 单次免疫;s.c.;剂量(1×103 PFU) [26]
2016 - 临床II期 泰国,
孟加拉国
单剂量 [25],[28]
2016年
2月 -
临床III期 巴西 单剂量,五年随访 [25], [27],
[28]
Table 1 The research status of Dengue Virus Vaccine: 3'UTRΔ30
Fig.3 The preparation process of rDENV2/4△30[19]
疫苗类型 每种成分剂量
(以Log10PFU计)
用于指定血清型的单价疫苗成分
DENV-1 DENV-2 DENV-3 DENV-4
TV001 3,3,3,3 rDENV1Δ30 rDENV2/4Δ30 rDENV3-3'D4Δ30 rDENV4Δ30
TV002 3,3,3,3 rDENV1Δ30 rDENV2/4Δ30 rDENV3-3'D4Δ30 rDENV4Δ30-200,201
TV003 3,3,3,3 rDENV1Δ30 rDENV2/4Δ30 rDENV3Δ30/31 rDENV4Δ30
TV004 3,3,3,3 rDENV1Δ30 rDENV2/4Δ30 rDENV3Δ30/31 rDENV4Δ30-200,201
TV005 3,4,3,3 rDENV1Δ30 rDENV2/4Δ30 rDENV3Δ30/31 rDENV4Δ30
Table 2 The composition of 3'UTRΔ30 quadruple vaccine TV001TV004
CYD-TDVTM TV003
结构 缺少DENV的全部非结构蛋白NS蛋白 包含 DENV 全部 NS 蛋白
免疫次数 受试者需在第0、6、12个月接受3次免疫[31] 一次免疫
免疫保护效果 未能够对四型 DENV 提供均衡的保护[32,33];持久性短 均衡的免疫保护效果,效力持续时间长
人群差异性 人群差异性显著
①对9岁以上保护率明显高于9岁以下[34,35]
②对从未感染过DENV或体内DENV抗体阴性的接种者的整体保护效率偏低
暂时未观察到明显人群差异性现象
Table 3 The comparison between TV003 and CYD-TDVTM
[1]   Anderson K B, Endy T P, Thomas S J . The dynamic role of dengue cross-reactive immunity: Changing the approach to defining vaccine safety and efficacy. Lancet Infect Dis, 2018,99(18):30126-30129.
doi: 10.1016/S1473-3099(18)30126-9 pmid: 29784457
[2]   Screaton G, Mongkolsapaya J, Yacoub S , et al. New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology, 2015,15(12):745-759.
doi: 10.1038/nri3916 pmid: 26603900
[3]   Bhatt S, Gething P W, Brady O J , et al. The global distribution and burden of dengue. Nature. 2013,496(7446):504-507.
doi: 10.1038/nature12060 pmid: 3651993
[4]   Scoot B , Halstead. Dengue antibody-dependent enhancement: Knowns and unknowns. Microbiology Spectrum, 2014,2(6):1-18.
doi: 10.1128/microbiolspec.AID-0022-2014 pmid: 26104444
[5]   陈柠, 石磊泰, 俞永新 . 登革热疫苗最新研究与展望. 中国病毒学杂志, 2016,6(6):471-480.
[5]   Chen N, Shi L T, Yu Y X . Research progress and prospective on dengue vaccine. Virologica Sinica, 2016,6(6):471-480.
[6]   Katzelnick L C, Coloma J, Harris E . Dengue: Knowledge gaps, unmet needs, and research priorities. Lancet Infectious Diseases, 2017,17(3):88-100.
doi: 10.1016/S1473-3099(16)30473-X pmid: 28185868
[7]   Crowe J E . Principles of broad and potent antiviral human antibodies: Insights for vaccine design. Cell Host & Microbe, 2017,22(2):193-206.
doi: 10.1016/j.chom.2017.07.013 pmid: 28799905
[8]   Fu J, Tan B H, Yap E H , et al. Full-length cDNA sequence of dengue type 1 virus (Singapore strain S275/90). Virology, 1992,188(2):953-958.
doi: 10.1016/0042-6822(92)90560-C
[9]   Whitehead S S, Falgout B, Hanley K A , et al. A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3'untranslated region is highly attenuated and immunogenic in monkeys. Journal Virology, 2003,77(2):1653-1657.
doi: 10.1128/JVI.77.2.1653-1657.2003
[10]   Blaney J E, Durbin A P, Murphy B R , et al. Development of a live attenuated dengue virus vaccine using reverse genetics. Viral Immunology, 2006,19(1):10-32.
doi: 10.1089/vim.2006.19.10 pmid: 16553547
[11]   Men R, Bray M, Clark D , et al. Dengue type 4 virus mutants containing deletions in the 39 noncoding region of the RNA genome: Analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in Rhesus Monkeys. Journal of Virology, 1996,70(6):3930-3937.
doi: 10.1055/s-2000-11466 pmid: 190271
[12]   Durbin A P, Karron R A, Sun W , et al. Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3'-untranslated region. American Journal Tropical Medicine & Hygiene, 2001,65(5):405-413.
doi: 10.0000/PMID11716091 pmid: 11716091
[13]   Durbin A P, Whitehead S S , McArthur J , et al. rDEN4Δ30, a live attenuated dengue virus type 4 vaccine candidate, is safe, immunogenic, and highly infectious in healthy adult volunteers. The Journal Infectious Diseases, 2005,191(5):710-718.
doi: 10.1086/427780 pmid: 15688284
[14]   Troyer J M, Hanley K A, Whitehead S S , et al. A live attenuated recombinant dengue-4 virus vaccine with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccines to mosquitoes. American Journal Tropical Medicine & Hygiene, 2001,65(5):414-419.
[15]   McArthur J H, Durbin A P, Marron J A , et al. Phase I clinical evaluation of rDEN4Δ30-200,201: A live attenuated dengue 4 vaccine candidate designed for decreased hepatotoxicity. American Journal Tropical Medicine & Hygiene, 2008,79(5):678-684.
doi: 10.1016/j.tsf.2007.05.060 pmid: 18981503
[16]   Wright P F, Durbin A P, Whitehead S S , et al. Phase1trial of the dengue virus type 4 vaccine candidate rDEN4Δ30-4995 in healthy adult volunteers. American Journal Tropical Medicine & Hygiene, 2009,81(5):834-841.
doi: 10.4269/ajtmh.2009.09-0131 pmid: 19861619
[17]   Whitehead S S, Falgout B, Hanley K A , et al. A live, attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3 untranslated region is highly attenuated and immunogenic in Monkeys. Journal of Virology, 2003,77(2):1653-1657.
doi: 10.1128/JVI.77.2.1653-1657.2003
[18]   Durbin A P , McArthur J, Marron J A , et al. The live attenuated dengue serotype 1 vaccine rDEN1 delta 30 is safe and highly immunogenic in healthy adult volunteers. Human Vaccines, 2006,2(4):167-173.
doi: 10.4161/hv.2.4.2944
[19]   Whitehead S S, Hanley K A, Blaney J E , et al. Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice, and rhesus monkeys. Vaccine, 2003,21(27-30):4307-4316.
doi: 10.1016/S0264-410X(03)00488-2 pmid: 14505913
[20]   Blaney J E, Hanson C T, Firestone C Y , et al. Genetically modified, live attenuated dengue virus type 3 vaccine candidates. American Journal Tropical Medicine & Hygiene, 2004,71(6):811-821.
doi: 10.1111/j.1365-3156.2004.01350.x pmid: 15642976
[21]   Durbin A P , McArthur J H, Marron J A , et al. rDEN2/4Δ30(ME), a live attenuated chimeric dengue serotype 2 vaccine, is safe and highly immunogenic in healthy dengue-naive adults. Human Vaccines, 2006,2(6):255-260.
doi: 10.4161/hv.2.6.3494
[22]   Durbina A P, Kirkpatrick B D, Pierce K K , et al. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine. Vaccine, 2011,29(42):7242-7250.
doi: 10.1016/j.vaccine.2011.07.023 pmid: 3170437
[23]   Durbin A P, Kirkpatrick B D, Pierce K K , et al. A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: A randomized, double-blind clinical trial. The Journal Infection Diseases, 2013,207(6):957-965.
doi: 10.1093/infdis/jis936 pmid: 23329850
[24]   Kirkpatrick B D, Durbin A P, Pierce K K , et al. Robust and balanced immune responses to all 4 dengue virus serotypes following administration of a single dose of a live attenuated tetravalent dengue vaccine to healthy, flavivirus-naive adults. The Journal Infection Diseases, 2015,212(5):702-710.
doi: 10.1093/infdis/jiv082
[25]   Durbin A P, Kirkpatrick B D, Pierce K K , et al. A 12-month-interval dosing study in adults indicates that a single dose of the national institute of allergy and infectious diseases tetravalent dengue vaccine induces a robust neutralizing antibody response. The Journal Infection Diseases, 2016,214(6):832-835.
doi: 10.1093/infdis/jiw067
[26]   Kirkpatrick B D, Whitehead S S, Pierce K K , et al. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Science Translational Medicine, 2016,8(330):330-336.
doi: 10.1126/scitranslmed.aaf1517 pmid: 27089205
[27]   Scherwitzl I, Mongkolsapaya J, Screaton G . Recent advances in human flavivirus vaccines. Current Opinion in Virology, 2017,23:95-101.
doi: 10.1016/j.coviro.2017.04.002 pmid: 28486135
[28]   Whitehead S S, Durbin A P, Pierce K K , et al. In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well- tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. Plos Neglected Tropical Disease, 2017,11(5):e0005584.
doi: 10.1371/journal.pntd.0005584 pmid: 28481883
[29]   Guy B, Jackson N . Dengue vaccine: Hypotheses to understand CYD-TDV-induced protection. Nature Reviews Microbiology, 2016,14(1):45-54.
doi: 10.1038/nrmicro.2015.2 pmid: 26639777
[30]   Nascimento E J M, George J K, Velasco M , et al. Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. Journal of Virological Methods, 2018,257:48-57.
doi: 10.1016/j.jviromet.2018.03.007 pmid: 29567514
[31]   Guy B, Briand O, Lang J , et al. Development of the sanofi pasteur tetravalent dengue vaccine: One more step forward. Vaccine, 2015,33(50):7100-7111.
doi: 10.1016/j.vaccine.2015.09.108
[32]   Villar L, Dayan G H , Arredondo-Garcia J L , et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. New England Journal of Medicine, 2015,372(2):113-123.
doi: 10.1056/NEJMoa1411037
[33]   Capeding M R, Tran N H, Hadinegoro S R , et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: A phase 3, randomized, observer-masked, placebo-controlled trial. Lancet, 2014,384(951):1358-1365.
doi: 10.1016/S0140-6736(14)61060-6
[34]   Whitehead S S . Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD TM vaccine? Expert Review Vaccines, 2016,15(4):509-517.
doi: 10.1586/14760584.2016.1115727
[35]   Wilder-Smith A, Messad E . Age specific differences in efficacy and safety for the CYD-tetravalent dengue vaccine. Expert Review Vaccines, 2016,15(4):437-441.
doi: 10.1586/14760584.2016.1143366
[36]   Magnani D M , Silveira C G T, Ricciardi M J , et al. Potent plasmablast-derived antibodies elicited by the National Institutes of Health Dengue Vaccine. Journal of Virology, 2017,91(22):e00867-17.
[37]   Popper S J, Strouts F R, Lindow J C , et al. Early transcriptional responses after dengue vaccination mirror the response to natural infection and predict neutralizing antibody titers. The Journal of Infectious Diseases. 2018,218(12):1911-1921.
doi: 10.1093/infdis/jiy434
[1] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[2] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[3] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[4] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[5] LIU Mei-qin,GAO Bo,JIAO Yue-ying,LI Wei,YU Jie-mei,PENG Xiang-lei,ZHENG Yan-peng,FU Yuan-hui,HE Jin-sheng. Long Non-coding RNA Expression Profile in A549 Cells Infected with Human Respiratory Syncytial Virus[J]. China Biotechnology, 2021, 41(2/3): 7-13.
[6] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[7] WU Han-rong,WANG Ying,LI Su-ning,SANG Xiao-dong,FAN Ling. Policy Research on the Construction of Biotechnology Base Platforms in China[J]. China Biotechnology, 2021, 41(10): 127-131.
[8] WANG Cong,LI Xiu,NIU Miao,DAI Yang-guang,DONG Zhe-yue,DONG Xiao-yan,YU Shuang-qing,YANG Yi-shu. Research on AAV9 Infectious Titer Detection Method Based on TCID50[J]. China Biotechnology, 2021, 41(10): 28-32.
[9] ZHU Xiao-jing,WANG Rui,ZHANG Xin-xin,JIN Jia-xin,LU Wen-long,DING Da-shun,HUO Cui-mei,LI Qing-mei,SUN Ai-jun,ZHUANG Guo-qing. Construction of MDV Recombinant Vaccine Strain Integrated F Gene Using Bacterial Artificial Chromosome Technique[J]. China Biotechnology, 2021, 41(10): 33-41.
[10] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[11] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[12] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[13] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[14] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[15] XIE Hang-hang,BAI Hong-mei,YE Chao,CHEN Yong-jun,YUAN Ming-cui,MA Yan-bing. The Purification Procedure for the Recombinant HBcAg Virus-like Particle Easy to Generate Aggregation[J]. China Biotechnology, 2020, 40(5): 40-47.