Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 82-90    DOI: 10.13523/j.cb.20181211
Orginal Article     
The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting
SUN Huai-yuan1,**(),SONG Xiao-kang2,LIAO Yue-hua1,LI Xiao-ou1
1 Medical Instrument College, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China;
2 College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Download: HTML   PDF(1119KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The process of cell acquisition and culture is an important part of tissue engineering construction. Three-dimensional bioprinting technology can support the development of tissue engineering. Piezoelectric micro-jetting realize pulsating flow of trace fluid under the interaction of the inertial force and fluid viscous force by “sound wave”, its application in the field of cell bioprinting belongs to the emerging technology, and it has the characteristics of high precision, high efficiency as well as low cost. Based on the introduction of micro-jetting technology system and principle, the effects of piezoelectric drive mode, piezoelectric parameters, pulse drive voltage waveform and bio-cell ink on cell bioprinting were analyzed, the cases studied of piezoelectric micro-jetting technology in high livability cell acquisition and efficient construction of cell three-dimensional tissue were provided, its application status in the field of cell bioprinting and research direction as well as significance were summarized.



Key wordsMicro-jetting technology      Cell bioprinting      Tissue Engineering     
Received: 30 July 2018      Published: 10 January 2019
ZTFLH:  Q819  
Corresponding Authors: Huai-yuan SUN     E-mail: shy62123@163.com
Cite this article:

SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting. China Biotechnology, 2018, 38(12): 82-90.

URL:

http://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181211     OR     http://manu60.magtech.com.cn/biotech/Y2018/V38/I12/82

Fig.1 Principle diagram of piezoelectric micro-jet printing system
Fig.2 Piezoelectric nozzle diagram
Fig.3 Comparison of piezoelectric drive mode
Fig. 4 Bipolar trapezoidal wave drive voltage
生物油墨打印细胞研究目的实验结果参考文献
聚乙烯吡咯烷成纤维细胞聚合物浓度对Z值和细胞打印稳定性的影响。通过改变聚合物浓度调节Z值可以提高细胞打印稳定性和细胞存活率。[16]
海藻酸钠和聚苯乙烯混合液成纤维细胞生物油墨浓度对打印细胞存活率的影响。生物油墨浓度降低,打印细胞存活率相应提高。[32]
聚蔗糖和磷酸盐缓冲溶液乳腺癌细胞生物油墨流变特性对细胞打印过程的影响。改善生物油墨流变性可以降低细胞聚集、沉积现象。[33-36]
无内毒素低酰基结冷胶悬浮液小鼠成肌细胞生物油墨流变特性对打印细胞存活率的影响。生物油墨流变性好,则打印的细胞存活率高。[37]
Table 1 Influence of bio-inks on cell printing
细胞种类生物油墨打印喷头细胞存活率参考文献
酵母细胞酵母-麦芽汁溶液F181010压电打印头96%[12]
鼠成纤维细胞胎牛血清-抗生素/抗真菌溶液30μm压电喷头94.4%[14]
新生儿包皮成纤维细胞聚乙烯吡咯烷酮基混合液50μm压电喷头95%[16]
小鼠成肌细胞无内毒素低酰基结冷胶悬浮液XAAR-126压电喷墨打印头95%[37]
仓鼠卵巢细胞磷酸盐缓冲液改进的HP51626a压电打印头90%[41]
骨髓基质细胞纤维蛋白原和凝血酶悬浮液50μm压电喷头98%[43]
Table 2 Several cell piezoelectric printing
Fig.5 Cryopreservation for printed cell
Fig.6 Tumor tissue array
Fig.7 3D vascular structure
Fig.8 Silk nest array for cell stores
[1]   金灿,陈振琦.应用3D打印技术制作组织工程支架:修复骨缺损的研究回顾.中国组织工程研究,2017,21(10):1611-1616.
[1]   Jin C,Chen Z Q.Tissue-engineered scaffold preparation using three-dimensional printing technology:a retrospective study on bone repair.Chinese Journal of Tissue Engineering Research,2017,21(10):1611-1616.
[2]   曹雪飞,宋朋杰,乔永杰,等.3D打印骨组织工程支架的研究与应用.中国组织工程研究,2015,19(25):4076-4080.
[2]   Cao X F,Song P J,Qiao Y J,et al.3D printing of bone tissue engineering scaffolds.Chinese Journal of Tissue Engineering Research,2015,19(25):4076-4080.
[3]   王雪欣,张明谏,李小兵,等.3D生物打印在组织/器官类似物制造领域的应用.中国组织工程研究,2018,22(10):1611-1617.
[3]   Wang X X,Zhang M J,Li X B,et al.Three-dimensional bioprinting of tissue/organ analogues:a review on techniques,materials and processes.Chinese Journal of Tissue Engineering Research,2018,22(10):1611-1617.
[4]   徐弢. 生物3D 打印在神经科学领域的最新进展.中华神经创伤外科电子杂志,2018,4(2):65-67.
[4]   Xu T.The latest advances of biological 3D printing in the field of neuroscience.Chin J Neurotrauma Surg (Electronic Edition),2018,4(2):65-67.
[5]   韩倩宜,李淑萍,肖雄夫,等.3D打印技术在植入式医疗器械中的应用.科技导报,2017,35(2):72-79.
[5]   Han Q Y,Li S P,Xiao X F,et al.3D Printing:The application in medicine devices.Science &Technology Review,2017,35(2):72-79.
[6]   杨润怀,陈月明,马长望,等.生物细胞三维打印技术与材料研究进展.生物医学工程学杂志,2017,34(2):320-324.
[6]   Yang R H,Chen Y M,Ma C W,et al.Research progress on the technique and materials for three-dimensional bio-printing.Journal of Biomedical Engineering,2017,34(2):320-324.
[7]   Gu Q,Hao J,Lu Y J,et al.Three-dimensional bio-printing.Sci China Life Sci,2015,58(5): 411-419.
[8]   魏玉雪,刘晓秋,李迪,等.3D打印技术在细胞打印方面的应用与发展.海南医学,2017,28(5): 801-804.
[8]   Wei Y X,Liu X Q,Li D,et al.Application and development of 3D printing technology in cell printing.Hainan Med J,2017,28(5):801-804.
[9]   周丽宏,陈自强,黄国友,等.细胞打印技术及应用.中国生物工程杂志,2010,30(12):95-104.
[9]   Zhou L H,Chen Z Q,Huang G Y,et al.The application of cell bioprinting . China Biotechnology,2010,30(12):95-104.
[10]   Sivaraman A,Leach J K,Townsend S,et al.Am icroscale in vitro physiolog icalmodel of the liver:predictive screen s for drug metabolism and enzyme induction.Current Drug Metabolism,2005,6(6): 569-592.
doi: 10.2174/138920005774832632 pmid: 16379670
[11]   叶青,王文军,鱼泳,等.3D生物打印在再生医学中的应用及展望.医疗卫生装备,2016,37(10):121-123.
[11]   Ye Q,Wang W J,Yu Y,et al.Application and prospects of 3D bioprintnig in regenerative medicine . Chinese Medical Equipment Journal,2016,37(10):121-123.
[12]   蔡仁烨. 细胞打印过程中的细胞受损分析.西安:西安电子科技大学,2013.
[12]   Cai R Y.Cell damage analysis in cell printing. Xi’an:Xidian University,2013.
[13]   Xu C,Zhang M,Huang Y,et al.Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink.Langmuir,2014,30(30) :9130-9138.
doi: 10.1021/la501430x pmid: 25005170
[14]   Kim Y K,Park J A,Yoon W H,et al.Drop-on-demand inkjet-based cell printing with 30-μm nozzle diameter for cell-level accuracy.Biomicrofluidics,2016,10 (6):064110.1-064110.11.
doi: 10.1063/1.4968845 pmid: 27990212
[15]   Kim J D,Choi J S,Kim B S,et al.Piezoelectric inkjet printing of polymers:stem cell patterning on polymer substrates.Polymer(Guildf),2010,(51):2147-2154.
doi: 10.1016/j.polymer.2010.03.038
[16]   Ng W L,Yeong W Y,Naing M W,et al.Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing.Materials,2017,10(2):190.1-190.12.
doi: 10.3390/ma10020190 pmid: 5459162
[17]   Lee J H,Gu Y,Wang H,et al.Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials .Biomaterials,2012 ,33(4) :999-1006.
doi: 10.1016/j.biomaterials.2011.10.036 pmid: 22061488
[18]   Zhang J,Chen F,He Z,et al.A novel approach for precisely controlled multiple cell patterning in microfluidic chips by inkjet printing and the detection of drug metabolism and diffusion.Analyst,2016,141(10) :2940.
doi: 10.1039/c6an00395h pmid: 27045202
[19]   The R,Yamaguchi S.Piezoelectric inkjet-based single-cells printing by image processing for high efficiency and automatic cell printing//17th International Conference on Miniaturized,2013:1656-1658.
[20]   Yamaguchi S,Ueno A,Akiyama Y,et al.Cell patterning through inkjet printing of one cell per droplet.Biofabrication,2012,4(4):045005.
doi: 10.1088/1758-5082/4/4/045005 pmid: 23075800
[21]   Kang W S,Koh J H.(1-x)Bi0.5Na0.5TiO3-TiO(3)lead-free piezoelectric ceramics for energy-harvesting applications.Materials Science,2015,(5):2057-2064.
doi: 10.1016/j.jeurceramsoc.2014.12.036
[22]   Zhang M,Song H T,Xu C X.Study of living cell distribution during inkjet printing of bioink//Proceedings of the asme international manufacturing science and engineering conference 2017.Los Angeles,USA:MSEC,2017:2921.
[23]   Saunders R E,Gough J E,Derby B.Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.Biomaterials,2008,(29):193-203.
doi: 10.1016/j.biomaterials.2007.09.032 pmid: 17936351
[24]   Gan H Y,Shan X C,Eriksson T,et al.Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation.Journal of Micromechanics and Microengineering,2009,(19):055010.1-055010.8.
doi: 10.1088/0960-1317/19/5/055010
[25]   Kwon K S,Kim W.A waveform design method for highspeed inkjet printing based on self-sensing measurement.Sensors and Actuators,2007,(4):75-83.
doi: 10.1016/j.sna.2007.06.010
[26]   Lee Y I,Kwon Y T,Lee K J,et al.A novel method for fine patterning by piezoelectrically induced pressure adjustment of inkjet printing.Electronic Materials,2015,44(8):2608-2614.
doi: 10.1007/s11664-015-3675-y
[27]   夏京瑞,周奕华,钱俊,等.基于细胞打印的压电式喷墨头研究进展.包装工程,2016,37(9):129-133,155.
[27]   Xia J R,Zhou Y H,Qian J,et al.Research progress of piezoelectric inkjet head based on cell printing.Packaging Engineering,2016,37(9):129-133,155.
[28]   Fromm J E.Numerical-calculation of the fluid-dynamics of drop-on-demand jets.IBMJ Res Dev,1984,28(3):322-333.
doi: 10.1147/rd.283.0322
[29]   Reis N,Ainsley C,Derby B.Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors.Journal of Applied Physics,2005,97(9) :815.
doi: 10.1063/1.1888026
[30]   Derby B.Inkjet printing of functional and structural materials:fluid property requirements,feature stability,and resolution.Annu Rev Mater Res,2010,(40):395-414.
doi: 10.1146/annurev-matsci-070909-104502
[31]   Jang D,Kim D,Moon J.Influence of fluid physical properties on ink-jet printability.Langmuir,2009,25(5):2629-2635.
doi: 10.1021/la900059m pmid: 19437746
[32]   Chahal D,Ahmadi A,Cheung K C.Improving piezoelectric cell printing accuracy and reliability through neutral buoyancy of suspensions.Biotechnology & Bioengineering,2012,109(11):2932-2940.
doi: 10.1002/bit.24562 pmid: 22627805
[33]   Moon S,Ceyhan E,Gurkan U A,et al.Statistical Modeling of single target cell encapsulation.PLoS One,2011,(6):e21580.
doi: 10.1371/journal.pone.0021580 pmid: 21814548
[34]   Liberski A R,Schubert U S.One cell-one well:A new approach to inkjet printing single cell microarrays.ACS Combinatorial Science,2010,(13);190-195.
doi: 10.1021/co100061c pmid: 21395345
[35]   Cheng E,Yu H,Ahmadi A,et al.Rheological manipulation for improved reliability in inkjet printing of living cells//2016 IEEE 29th International Conference on Micro Electro Mechanical Systems.Shanghai,China:IEEE,2016:784-787.
[36]   Cheng E,Ahmadi A,Cheung K C.Investifation of the hydrodynamics of suspended cells for reliable inkjet cell printing /ASME 2014 12th International Conference on Nanochannels,Microchannels,and Minichannels.Chicago,USA:Asme International Conference on Nanochannels 2014:V001T03A010.
[37]   Ferris C,Gilmore K,Beirne S,et al.Bio-ink for on-demand printing of living cells.Biomaterials Science,2013,1(2) :224-230.
doi: 10.1039/c2bm00114d
[38]   Cui X,Dean D,Ruggeri M.Cell damage evaluation of thermal inkjet printed chinese hamster ovary cells.Biotechnology & Bioengineering,2010,106(6):963-969.
doi: 10.1002/bit.22762 pmid: 20589673
[39]   Ozbolat I,Yu Y.Bioprinting toward organ fabrication:Challenges and future trends.IEEE Transactions on Biomedical Engineering,2013,60(3) :691-699.
doi: 10.1109/TBME.2013.2243912 pmid: 23372076
[40]   Ringeisen B R,Pirlo R K,Wu P K,et al.Cell and organ printing turns 15:Diverse research to commercial transtitions.MRS Bull,2013,(38):834-843.
[41]   Xu T,Joyce J,Cassie G,et al.Inkjet printing of viable mammalian cells.Biomaterials,2005,26(1):93-99.
doi: 10.1016/j.biomaterials.2004.04.011 pmid: 15193884
[42]   Lorber B,Hsiao W K,Hutchings I M,et al.Adult rat retinal ganglion cells and glia can be printed by piezoelectric injet printing.Biofabrication,2014,6(1):152-163.
doi: 10.1088/1758-5082/6/1/015001 pmid: 24345926
[43]   Detsch R,Blob S,Zehnder T,et al.Evaluation of cell inkjet printing technique for biofabrication.BioNanoMat,2016,17(3):185-191.
[44]   Zhang X,Catalano P N,Gurkan U A,et al.Emerging technologies in medical applications of minimum volume vitrification.Nanomedicine,2011,(6):1115-1129.
doi: 10.2217/nnm.11.71 pmid: 3193162
[45]   Yong K W,Safwani W K,Xu F,et al.Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells.Journal of Tissue Engineering and Regenerative Medicine,2016,11(8) :2217-2226.
doi: 10.1002/term.2120 pmid: 26756982
[46]   Dou R,Saunders R E,Mohamet L,et al.High through put cryopreservation of cells by rapid freezing of sub-μl drops using inkjet printing-cryoprinting.Lab Chip,2015,(15):3503-3513.
[47]   Dimasi J A,Feldman L,Seckler A,et al.Trends in risks associated with new drug development:Success rates for investigational drugs.Clin Pharmacol Ther,2010,87(3) :272.
doi: 10.1038/clpt.2009.295 pmid: 20130567
[48]   Hay M,Thomas D W,Craighead J L,et al.Clinical development success rates for investigational drugs.Nature Biotechnology,2014 ,32(1) :40-51.
doi: 10.1038/nbt.2786 pmid: 24406927
[49]   Park T M,Kang D,Jang I,et al.Fabrication of in vitro cancer microtissue array on fibroblast-layered nanofibrous membrane by inkjet printing.International Journal of Molecular Sciences,2017,18(11):2348.
doi: 10.3390/ijms18112348 pmid: 29112150
[50]   Cohen D L.Direct freeform fabrication of seeded hydrogels in arbitrary geometries.Tissue Engineering,2006,(12):1325-1335.
[51]   Jakab K.Three-dimensional tissue constructs built by bioprinting.Biorheology,2006,(43):509-513.
doi: 10.1016/S0022-3093(00)00207-6 pmid: 16912422
[52]   Ozbolat I T,Hospodiuk M.Current advances and future perspectives in extrusion-based bioprinting.Biomaterials,2016,(76):321-343.
doi: 10.1016/j.biomaterials.2015.10.076 pmid: 26561931
[53]   Visser J.Biofabrication of multi-material anatomically shaped tissue constructs.Biofabrication,2013,(5):035007.
[54]   Faulkner-jones A,Fyfe C,Cornelissen D J,et al.Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for generation of mini-livers in 3D.Biofabrication,2015,7(4):044102.
doi: 10.1088/1758-5090/7/4/044102 pmid: 26486521
[55]   Zhang J,Hartmann B,Siegel J,et al.Sacrificial-layer free transfer of mammalian cells using near infrared femtosecond laser pulses.PLoS ONE,2018,13(5):e0195479.
doi: 10.1371/journal.pone.0195479 pmid: 29718923
[56]   Koch L,Deiwick A,Chichkov B.Laser-based 3D cell printing for tissue engineering.BioNanoMaterials,2014,(15):71-78.
[57]   Xiong R,Zhang Z,Chai W,et al.Study of gelatin as an effective energy absorbing layer for laser bioprinting.Biofabrication,2017,(9):24103-24117.
doi: 10.1088/1758-5090/aa74f2 pmid: 28597844
[58]   Huang T Q.3D printing of biomimetic microstructures for cancer cell migration.Biomed Microdevices,2014,(16):127-132.
doi: 10.1007/s10544-013-9812-6 pmid: 3945947
[59]   Cui X,Gao G,Qiu Y.Accelerated myotube formation using bioprinting technology for biosensor applications.Biotechnology Letters,2013,35(3):315-321.
doi: 10.1007/s10529-012-1087-0 pmid: 23160742
[60]   Christensen K,Xu C,Chai W,et al.Freeform inkjet printing of cellular structures with bifurcations.Biotechnology & Bioengineering,2015,(112):1047-1055.
doi: 10.1002/bit.25501 pmid: 25421556
[61]   Suntivich R,Drachuk I,Calabrese R.Inkjet printing of silk nest arrays for cell hosting.Biomacromolecules,2014,15(4):1428-1435.
doi: 10.1021/bm500027c pmid: 24605757
[62]   Owens C M,Marga F,Forgacs G.Biofabrication and testing of a fully cellular nerve graft.Biofabrication,2013,5(4):380-387.
doi: 10.1088/1758-5082/5/4/045007 pmid: 24192236
[63]   Lee V,Singh G,Trasatti J P,et al.Design and fabrication of human skin by three-dimensional bioprinting.Tissue Eng Part C Methods,2014,20(6):473-484.
[64]   Xu T,Binder K W,Albanna M Z,et al.Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.Biofabrication,2013,5(1):1-10.
[1] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[2] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[3] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[4] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[5] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.
[6] WANG Dian-liang. Seed Cells[J]. China Biotechnology, 2014, 34(7): 108-113.
[7] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[8] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[9] WANG Dian-liang. Types and Applications of Tissue Engineering Products[J]. China Biotechnology, 2014, 34(11): 125-129.
[10] WANG Dian-liang. Clinical Researches of Tissue Engineering[J]. China Biotechnology, 2014, 34(10): 114-120.
[11] DONG Mao-sheng, WANG Dian-liang. Biological Scaffold Materials[J]. China Biotechnology, 2014, 34(06): 122-127.
[12] HE Jian-kang, LIU Ya-xiong, LIAN Qin, WANG Ling, JIN Zhong-min, LI Di-chen. Biofabrication of Vital Parenchymal Organs[J]. China Biotechnology, 2012, 32(09): 76-81.
[13] DU Juan, WANG Dian-liang, ZHANG Yan-mei, SUN Jin-wei. Challenges and Prospects of Tissue Engineering[J]. China Biotechnology, 2011, 31(06): 142-148.
[14] ZHOU Li-hong, CHEN Zi-qiang, HUANG Guo-you, ZHAI Xiao, CHEN Yong-mei, XU Fong, LU Tian-jian. The Application of Cell Bioprinting[J]. China Biotechnology, 2010, 30(12): 95-104.
[15] HUANG Kai-Zong, WANG Wen-Xing, ZHANG Guang-E. Advances in Applications of Elastin-like Polypeptides in Biomedical Materials[J]. China Biotechnology, 2010, 30(05): 128-132.