Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (10): 81-85    DOI: 10.13523/j.cb.20171011
    
The Application of Logistic Equation to Simulate Ethanol Fermentation in Different Initial Concentration Reducing Sugar
WANG Jing-sheng, WANG Qiu-feng, LI Yong, LIU Yan, ZHANG Xian-chu, LI Bo, DONG Qing-shan, LIU Yue
Hennan TianGuan Group Co., Ltd., State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China
Download: HTML   PDF(502KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Many environmental factors have a great effect on the process and efficiency for converting fermentable sugar into ethanol by Saccharomyces cerevisiae. Studies on the kenetics of the ethanol formation are benefit for understanding the ethanol fermentation mechanisms. It can provide a theoretical basis for the amplification and optimization of the ethanol production process. Ethanol fermentation kinetics in many literatures are based on cell growth model, which include the models of ethanol production, these kind models have more variables. Simultaneous saccharification and ethanol fermentation with different reducing sugar initial concentrations was simulated by Logistic equation model. The display function model of ethanol concentration was given. The results showed that:in the ethanol process of simultaneous saccharification and fermentation with 310g/L corn flour material, the fermentation time could be shortened and the efficiency for converting fermentable sugar into ethanol could be raised by increasing the concentration of the initial reducing sugar.

Key wordsEthanol      Logistic model      Corn      Fermentation      Kinetic     
Received: 06 August 2017      Published: 25 October 2017
ZTFLH:  Q819  
Cite this article:

WANG Jing-sheng, WANG Qiu-feng, LI Yong, LIU Yan, ZHANG Xian-chu, LI Bo, DONG Qing-shan, LIU Yue. The Application of Logistic Equation to Simulate Ethanol Fermentation in Different Initial Concentration Reducing Sugar. China Biotechnology, 2017, 37(10): 81-85.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171011     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I10/81

[1]   刘钺, 杜风光. 燃料乙醇在我国油品升级中的替代研究. 酿酒科技, 2016,10:37-39. Liu Y, Du F G. Replacement of fuel ethanol in oil products upgrading in China. Liquor-Making Science & Technology,2016,10:37-39.
[2]   常春, 王铎, 王林风, 等. 高底物浓度纤维乙醇同步糖化发酵工艺的比较. 化工学报, 2012,63(3):935-940. Chang C, Wang D, Wang L F, et al. Comparative study on processes of simultaneous saccharification and fermentation with high solid concentration for cellulosic ethanol production. CIESC Journal, 2012,63(3):935-940.
[3]   张晓阳, 李余动, 吴雪昌. 酿酒酵母的"组学"技术研究进展及其在工程菌株构建中的应用. 中国生物工程杂志, 2011,(8):139-144. Zhang X Y, Li Y D, Wu X C, et al. Research progress of "omics" technologies and its application in construction of engineering strain of Saccharomyces cerevisiae. China Biotechnology, 2011,(8):139-144.
[4]   杨小健, 殷绚, 欧阳平凯. 乙醇发酵过程模型及模拟优化研究进展. 化工进展, 2008,27(12):1861-1867. Yang X J, Yin X, Ouyang P K. Progress of modeling and simulation of ethanol fermentation. Chemical Industry And Engineering Progress, 2008,27(12):1861-1867.
[5]   关晓男. 乙醇同步糖化发酵动力学模型的研究.哈尔滨:哈尔滨工程大学, 材料科学与化学工程学院, 2012. Guan X N. Research on kinetic model for ethanol simultaneous saccharification and fermentation. Harbin:Harbin Engineering University, College of Materials Science And Chemical Engineering, 2012.
[6]   Ricker W E. 11 Growth rates and models. Fish Physiology, 1979,8(08):677-743.
[7]   郭军英. 关于血球计数板的使用及注意事项. 教学仪器与实验, 2009,25(4):26-28. Guo J Y. Matters needing attention about the use of blood counting ehamber. Educational Equipment and Experiment, 2009,25(4):26-28.
[8]   王俊刚, 张树珍, 杨本鹏, 等. 3,5-二硝基水杨酸(DNS)法测定甘蔗茎节总糖和还原糖含量. 甘蔗糖业, 2008,5:45-49. Wang J G, Zhang S Z, Yang B P, et al. Application of 3,5-dinitrosalicyIic acid(DNS)method to test the reducing sugar and water-soluble total sugar content in sugarcane internodes. Sugarcane And Canesugar, 2008,5:45-49.
[9]   于鲁浩, 杨俊慧, 孟庆军, 等. 玉米粉中淀粉含量的快速测定方法. 山东科学, 2012,25(1):19-23. Yu L H, Yang J H, Meng Q J, et al. Fast determination of maize starch content in cornflour. Shandong Science, 2012,25(1):19-23.
[10]   章克昌. 酒精与蒸馏酒工艺学. 北京:中国轻工业出版社, 1995. Zhang K C. Alcohol and Distilled Spirits Technology. Beijing:China Light Industry Press, 1995.
[11]   Phisalaphong M, Srirattana N, Tanthapanichakoon W. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 2006,28(1):36-43.
[12]   丁乾坤. 酒精发酵产物动力学模型的研究. 哈尔滨:哈尔滨工程大学, 材料科学与化学工程学院, 2012. Ding Q K. Research on kinetic product model for ethanol fermentation. Harbin:Harbin Engineering University, College of Materials Science and Chemical Engineering, 2012.
[13]   岳国君, 刘文信, 刘劲松, 等. Logistic模型模拟乙醇发酵产物动力学. 农业工程学报, 2015,5:280-286. Yne G J, Liu W X, Liu J S, et al. Product kinetics of logistic model to simulate ethanol fermentation.Transactions of the Chinese Society of Agricultural Engineering,2015,5:280-286.
[14]   唐艳艳, 易弋, 伍时华, 等. 木薯粉浓醪酒精同步糖化发酵工艺研究. 安徽农业科学, 2010,23:12690-12692. Tang Y Y, Yi G, Wu S H, et al. Investigation on synchronous saccharification and alcohol fermentation technology of concentrated mash of cassava flour. Journal of Anhui Agricultural Sciences, 2010,23:12690-12692.
[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[4] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[5] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[6] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[7] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[8] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[9] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[10] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[11] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[12] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[13] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[14] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[15] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.