Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (10): 60-64    DOI: 10.13523/j.cb.20171008
    
Scale-up Process Optimization for Recombinant PPV-VP2 Protein Production Using Baculovirus Expression System in 40L Bioreactor
SU Xiao-rui, LI Wei-guo, WANG Yan-hui, GAO Xiao-jing, SHAN Yi-hong, TAN Fei-fei, LI Xiang-dong, TIAN Ke-gong
National Research Center for Veterinary Medicine, Luoyang 471003, China
Download: HTML   PDF(485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The focuses are on the scale-up of a Sf9 cell line to produce recombinant porcine parvovirus (PPV) VP2 protein expression using baculovirus/insect expression system from the initial 3-L bench scale to the 40-L scale. In 3L bioreactor, HA titer of VP2 protein side-by-side comparison of shake flask by optimization of DO and Agit. The operational parameters of temperature, DO, and pH for large vessels were set at the same values as those of 3-L bioreactor. Appropriately applying the calculated results to power input per volume, oxygen transfer coefficient and tip speed, resulted in successful scale-up of agitation speed for the large bioreactors. By HA titer analysis, VP2 protein had identical haemagglutinating activity comparison of 3-L. By guinea pig immunization test, It is found that recombinant VP2 subunit vaccine can be induced high level antibody reaction, and immune with recombinant VP2 subunit vaccine was faster than classical inactivated PPV vaccine.

Key wordsRecombinant baculovirus PPV-VP2      Scale-up      Sf9 cell      STR     
Received: 19 March 2017      Published: 25 October 2017
ZTFLH:  Q819  
Cite this article:

SU Xiao-rui, LI Wei-guo, WANG Yan-hui, GAO Xiao-jing, SHAN Yi-hong, TAN Fei-fei, LI Xiang-dong, TIAN Ke-gong. Scale-up Process Optimization for Recombinant PPV-VP2 Protein Production Using Baculovirus Expression System in 40L Bioreactor. China Biotechnology, 2017, 37(10): 60-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171008     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I10/60

[1]   杜毅超,吴健敏,刘金凤.猪细小病毒病毒样颗粒研究进展.动物医学进展,2016,37(7):71-75. Du Y C,Wu J M,Liu J F. Progress on porcine parvovirus virus-like particles. Progress in Veterinary Medicine,2016,37(7):71-75.
[2]   Lager K M,Mengeling W L. Porcine parvovirus associated with cutaneous lesions in piglets. J Vet Diagn Invest,1994,6(3):357-359.
[3]   Bolt D M,Waldvogel A S,Häni H,et al. Non-suppurative myocarditis in piglets associated with porcine parvovirus infection. J Comp Pathol,1997,117(2):107-118.
[4]   Kushnir N,Streatfield S J,Yusibov V. Virus-like particles as a highly efficient vaccine platform:Diver-sity of targets and production systems and advances in clinical development. Vaccine,2012,31(1):58-83.
[5]   苌生科. PPV/HN-2011毒株分子生物学特性研究及利用杆状病毒表达其VP2蛋白. 郑州:河南农业大学,2013. Chang S K. Porcine parvovirus HN-2011 molecular biological characteristics and expressed VP2 protein in insect baculovirus cell system. Zhengzhou:Henan Agricultural University,2013.
[6]   Martine Z C,Dalsgaard K,Lopezde Turiso J A,et al. Production of porcine parvovirus empty capsids with high immunogenic activity. Vaccine,1992,10(10):684-690.
[7]   Adriaan F G,Christianne J M,Palomar,et al. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine,2006,24:5481-5490.
[8]   Yang J D, Lu C, Stasny B,et al. Fed-batch bioreactor process scale-up from 3-L to 2500-L scale for monoclonal antibody production from cell culture. Biotechnology and Bioengineering,2007,98(1):141-154.
[9]   Dreher T,Husemann U,Adams T,et al. Design space definition for a stirred single-use bioreactor family from 50 to 2000L scale. Eng Life Sci, 2014,14:304-310.
[10]   Agathos S N. Insect cell bioreactors. Cytotechnology,1996,20:173-189.
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[3] ZHENG Jie,WU Hao,QIAO Jian-jun,ZHU Hong-ji. Research Progress of Capsular Polysaccharides in Gram-positive Bacteria[J]. China Biotechnology, 2021, 41(7): 91-98.
[4] WANG Shan,XUE Zheng-lian,SUN Jun-feng,WANG Fang,ZHOU Jian,LIU Yan,WANG Zhou. Effect of Salt-enhanced Culture on the Production of Neomycin by Streptomyces fradiae[J]. China Biotechnology, 2021, 41(7): 22-31.
[5] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[6] TAN Qing-li,LIN Dai-heng,LIU Jia-yuan,LIN Xing-chun. Study on the Benefits of Biomedical Industry in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Grey Comprehensive Correlation Analysis[J]. China Biotechnology, 2021, 41(6): 89-97.
[7] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[8] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[9] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[10] CHEN Ying,LI Qian. Patent Analysis on the Development Trend of Industrial Application of Special Yeast[J]. China Biotechnology, 2021, 41(4): 91-99.
[11] WANG You-bei,GUO Si-yu,CHANG Bi-bo,YE Rui-fang,HUA Qiang. Establishment of Conjugation System for the Spiramycin Producer Streptomyces spiramyceticus[J]. China Biotechnology, 2021, 41(2/3): 45-52.
[12] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[13] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[14] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[15] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.