Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (9): 141-147    DOI: 10.13523/j.cb.20170919
    
Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase
LI Ji-bin, CHEN Zhi, CHEN Hua-you
Institute of Life Science, Jiangsu University, Zhenjiang 212013,China
Download: HTML   PDF(523KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  With the rapid development in genetic engineering technology, the analysis of the nitrilase gene from different strains, was cloned in the expression strain, to construct an efficient and stable genetically engineered bacteria. The molecular modification of the nitrilase could significantly improve the activity stability, substrate tolerance and substrate specificity of the enzyme, which make possible the use of nitrile hydrolase in the industrial applications.The origin, structure, catalytic mechanism, clonal expression, immobilization, molecular modification and prospects of nitrilase were reviewed. And it demonstrate important guidelines for the significance of nitrilase research.

Key wordsNitrilase      Immobilization      Cloning      Molecular modification     
Received: 08 March 2017      Published: 25 September 2017
ZTFLH:  Q812  
Cite this article:

LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase. China Biotechnology, 2017, 37(9): 141-147.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170919     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I9/141

[1] Brenner C. Catalysis in the nitrilase superfamily. Current Opinion in Structural Biology, 2002, 12(6):775-782.
[2] Mathew S, Nadarajan S P, Sundaramoorthy U, et al. Biotransformation of β-keto nitriles to chiral (S)-β-amino acids using nitrilase and ω-transaminase. Biotechnol Lett, 2017, 39(4):534-543.
[3] Luo H, Ma J, Chang Y, et al. Directed evolution and mutant characterization of nitrilase from Rhodococcus rhodochrous, tg1-A6. Applied Biochemistry and Biotechnology, 2016, 178(8):1510-1521.
[4] Banerjee A, Sharma R,Banerjee U C. The nitrile-degrading enzymes:current status and future prospects. Applied Microbiology and Biotechnology, 2002, 60(1-2):33-44.
[5] Martinkova L, Vejvoda V, Kaplan O, et al. Fungal nitrilases as biocatalysts:Recent developments. Biotechnology Advances, 2009, 27(6):661-670.
[6] Lehmann T, Janowitz T, Sánchez-Parra B, et al. Arabidopsis nitrilase I contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings. Frontiers in Plant Science, 2017,8(36):1-15.
[7] 龚劲松,李恒,谢旻峰,等. 重组真菌腈水解酶的发酵工艺条件及生物催化特性初探. 精细化工, 2015, 32(10):1112-1119. Gong J S, Li H, Xie M F, et al.Studies on fermentation conditions and biocatalytic properties of recombinant fungi nitrilase. Fine Chemicals, 2015, 32(10):1112-1119.
[8] 薛媛, 薛亚平, 郑裕国. 区域选择性腈水解酶在化学品合成中的应用. 精细与专用化学品, 2016, 24(5):25-31. Xue Y, Xue Y P, Zheng Y G. Application of regioselectivity nitrilase in synthesis of chemicals. Fine & Specialty Chemicals, 2016, 24(5):25-31.
[9] Thimann K V, Mahadevan S. Nitrilase.I.occurrence,preparation,and general properties of the enzyme. Archives of Biochemistry & Biophysics, 1964, 105(1):133-141.
[10] Chen H, Chen Z, Ni Z, et al. Display of Thermotoga maritima, MSB8 nitrilase on the spore surface of Bacillus subtilis, using out coat protein CotG as the fusion partner. Journal of Molecular Catalysis B Enzymatic, 2016, 123(JAN):73-80.
[11] Dennett G V, Blamey J M. A New Thermophilic nitrilase from an antarctic hyperthermophilic microorganism. Frontiers in Bioengineering & Biotechnology, 2016,4(5):1-9.
[12] Nicholas M S, Karen T R, Andreas K. Lonza:20 years of biotransformations. Cheminform, 2003, 34(27):425-435.
[13] Schmid A, Dordick J S, Hauer B, et al. Industrial biocatalysis today and tomorrow. Nature, 2001, 409(6817):258-268.
[14] Pace H C, Brenner C. The nitrilase superfamily:classification, structure and function. Genome Biology, 2001, 2(1):1-9.
[15] Raczynska J E, Vorgias C E, Antranikian G, et al. Crystallographic analysis of a thermoactive nitrilase. Journal of Structural Biology. 2011, 173(2):294-302.
[16] Zhang L, Yin B, Wang C, et al. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. Journal of Structural Biology, 2014, 188(2):93-101.
[17] Banerjee A, Sharma R, Banerjee U C. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnology & Applied Biochemistry, 2003, 37(3):289-293.
[18] Pace H C, Hodawadekar S C, Draganescu A, et al. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Current Biology, 2000, 10(15):907-917.
[19] Kiziak C, Klein J, Stolz A. Influence of different carboxy-terminal mutations on the substrate,reaction-and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Protein Engineering Design & Selection Peds, 2007,20(8):385-396.
[20] Williamson D S, Dent K C, Weber B W, et al. Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus, RAPc8. Applied Microbiology and Biotechnology, 2010, 88(1):143-153.
[21] Vejvoda V, Kubac D, Davidova A, et al. Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem, 2010, 45(7):1115-1120.
[22] 陈志. 海栖热袍菌腈水解酶表达鉴定及在枯草杆菌芽孢表面展示. 镇江:江苏大学,生命科学研究院,2016. Chen Z. Expression and Characterization of Thermotoga maritima MSB8 Nitrilase and Its Surface Display on Bacillus subtilis spore. Zhen Jiang:Life Science Research Institute,Jiangsu University, 2016.
[23] Hook R H, Robinson W G. Ricinine nitrilase.Ⅱ.purification and properties. Journal of Biological Chemistry, 1965, 239(12):4263-4267.
[24] Banerjee A, Sharma R, Banerjee U C. The nitrile-degrading enzymes:current status and future prospects. Applied Microbiology and Biotechnology, 2002,60(1-2):33-44.
[25] Chen J, Zheng R C, Zheng Y G, et al. Microbial transformation of nitriles to high-value acids or amides. Advances in Biochemical Engineering/Biotechnology, 2009, 113(35):33-77.
[26] Piotrowski M, Schonfelder S,Weiler E W. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. Journal of Biological Chemistry, 2001, 276(4):2616-2621.
[27] Jenrich R, Trompetter I, Bak S, et al. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47):18848-18853.
[28] Stevenson D E, Feng R, Dumas F, et al. Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase. Biotechnology & Applied Biochemistry, 1992, 15(3):283-302.
[29] Nagasawa T, Wieser M, Nakamura T, et al. Nitrilase of Rhodococcus rhodochrous J1- Conversion into the active form by subunit association. Eur J Biochem, 2000, 267(1):138-144.
[30] 郝劲松. Gibberella intermedia腈水解酶的克隆、鉴定及分子改造. 无锡:江南大学,生物工程学院,2013. Hao J S. Cloning, Identification and Molecular Modification of Gibberella intermedia Nitrilase. Wuxi:Jiangnan University,College of Bioengineering, 2013.
[31] Stalker D M, Mcbride K E. Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. Journal of Bacteriology, 1987, 169(3):955-960.
[32] Bartling D, Seedorf M, MithÖFer A, et al. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry, 1992, 205(1):417-424.
[33] Pekarsky Y, Campiglio M, Siprashvili Z, et al. Nitrilase and fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15):8744-8749.
[34] Kobayashi M, Izui H, Nagasawa T, et al. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile:cloning of the Alcaligenes gene and site-directed mutagenesis of cysteine residues. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(1):247-251.
[35] LevySchil S, Soubrier F, Crutz-Le Coq A M, et al. Aliphatic nitrilase from a soil-isolated Comamonas testosteroni sp.:gene cloning and overexpression, purification and primary structure. Gene, 1995, 161(1):15-20.
[36] Kobayashi M, Yanaka N, Nagasawa T, et al. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Biochemistry, 1992, 31(37):9000-9007.
[37] Zhu D, Mukherjee C, Yang Y, et al. A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity.Journal of Biotechnology, 2008, 133(3):327-333.
[38] Chen Z, Chen H, Ni Z, et al. Expression and characterization of a novel nitrilase from hyperthermophilic bacterium Thermotoga maritima MSB8. Journal of Microbiology & Biotechnology, 2015, 25(10):1660-1669.
[39] Mueller P, Egorova K, Vorgias C E, et al. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expression & Purification, 2006, 47(2):672-681.
[40] Kaplan O, Bezouska K, Plihal O, et al. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. Bmc Biotechnol, 2011, 11(32):1-15.
[41] Yusuf F, Jamwal U, Chaubey A, et al. Cloning and functional characterization of nitrilase from Fusarium proliferatum AUF-2 for detoxification of nitriles. Functional & Integrative Genomics, 2015, 15(4):413-424
[42] Veselá A B, Rucká L, Kaplan O, et al. Bringing nitrilase sequences from databases to life:the search for novel substrate specificities with a focus on dinitriles. Applied Microbiology and Biotechnology, 2016, 100(5):1-10.
[43] Schreiner U, Hecher B, Obrowsky S, et al. Directed evolution of Alcaligenes faecalis nitrilase. Enzyme & Microbial Technology, 2010, 47(4):140-146.
[44] Yeom S J, Kim H J, Lee J K, et al. An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochemical Journal, 2008, 415(3):401-407.
[45] Sosedov O, Baum S, Burger S, et al. Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Applied & Environmental Microbiology, 2010, 76(11):3668-3674.
[46] Petǐíčková A, Sosedov O, Baum S, et al. Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger, and Neurospora crassa. Journal of Molecular Catalysis B Enzymatic, 2012, 77(9):74-80.
[47] Kumar S, Mohan U, Kamble A L, et al. Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresource Technology, 2010, 101(17):6856-6858.
[48] Nigam V K, Khandelwal A K, Gothwal R K, et al. Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp.. Journal of Biosciences, 2009, 34(1):21-26.
[49] Kaul P, Banerjee A,Banerjee U C. Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 2006, 7(5):1536-1541.
[50] Chen H, Chen Z, Wu B, et al. Influences of various peptide linkers on the Thermotoga maritima MSB8 nitrilase displayed on the spore surface of Bacillus subtilis. Journal of Molecular Microbiology & Biotechnology, 2017,27(1):64-71.
[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[4] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[5] Jun-song SHI,Lü-hua LUO,Rong ZHOU,Ran-biao MAI,Hong-mei JI,Wan-xian YU,Zhen-fang WU,Geng-yuan CAI. Delayed Activation Can Improve in Vitro and in Vivo Developmental Capacity of Pig Cloned Embryos[J]. China Biotechnology, 2019, 39(4): 16-23.
[6] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[7] Yi-fan JIANG,Jing DONG,Jing-shuang WEI. Monoclone Selection and Monoclonal Verification of Engineering Cell Lines[J]. China Biotechnology, 2019, 39(4): 101-105.
[8] ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells[J]. China Biotechnology, 2019, 39(11): 70-77.
[9] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[10] Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO. The Research Progress of Antibody Immobilization[J]. China Biotechnology, 2018, 38(4): 78-89.
[11] Jian PENG,Jing SU,Xiao-hui YANG,Teng-fei WANG,Jun-qing WANG,Rui-ming WANG. Studies on Efficient Utilization of Glycerol of Candida tropicalis 1798[J]. China Biotechnology, 2018, 38(2): 38-45.
[12] Shuang-shuang LIU,Suo-wei WU,Li-qun RAO,Xiang-yuan WAN. Molecular Mechanism and Application Analysis of Genic Male Sterility in Maize[J]. China Biotechnology, 2018, 38(1): 100-107.
[13] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[14] Cun-duo TANG,Hong-ling SHI,Zhu-jin JIAO,Fei LIU,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Effect of Prolines in the Loop of CPC Acylase Substrate Binding Region on Its Catalytic Properties[J]. China Biotechnology, 2017, 37(12): 34-39.
[15] RAO Jing-jing, JING Yi-xian, ZOU Ming-yue, HU Xiao-lei, LIAO Fei, YANG Xiao-lan. Clone, Expression and Characterization of the Uricase from Meyerozyma guilliermondii[J]. China Biotechnology, 2017, 37(11): 74-82.