Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (4): 41-45    DOI: 10.13523/j.cb.20140407
    
Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae
LIU Yu-xue1,2, ZHANG Yi-xin1, WANG Lei1, LIN Xin-ping1, ZHU Zhi-wei1, ZHAO Zong-bao1
1. Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
2. University of Chinese Academy of Science, Beijing 100049, China
Download: HTML   PDF(562KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Equol is an active and stable phytoestrogen. It can be produced by microbial conversion of a known compound daidzein. A recombinant Saccharomyces cerevisiae strain was constructed, which harbored a plasmid enabling expression of genes orf-1, orf-2 and orf-3 for the conversion of daidzein into equol. It was found that the recombinant strain was able to convert dihydrodaidzein, the immediate downstream product of the reaction sequence, into equol. The results provided valuable information for the construction of yeast cell factory for de novo biosynthesis of equol.



Key wordsEquol      Dihydrodaidzein      Saccharomyces cerevisiae      Biocatalysis     
Received: 11 March 2014      Published: 25 April 2014
ZTFLH:  Q812  
Cite this article:

LIU Yu-xue, ZHANG Yi-xin, WANG Lei, LIN Xin-ping, ZHU Zhi-wei, ZHAO Zong-bao. Formation of Equol from Dihydrodaidzein by Recombinant Saccharomyces cerevisiae. China Biotechnology, 2014, 34(4): 41-45.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140407     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I4/41


[1] Song W O, Chun O K, Hwang I, et al. Soy isoflavones as safe functional ingredients. J Med Food, 2007, 10: 571-580.

[2] Setchell K D R, Brown N M, Lydeking-Olsen E. The clinical importance of the metabolite equol-A clue to the effectiveness of soy and its isoflavones. J Nutr, 2002, 132: 3577-3584.

[3] Muthyala R S, Ju Y H, Sheng S B, et al. Equol, a natural estrogenic metabolite from soy isoflavones: convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem, 2004, 12(6): 1559-1567.

[4] Gharpure S J, Sathiyanarayanan A M, Jonnalagadda P. O-Quinone methide based approach to isoflavans: application to the total syntheses of equol, 3'-hydroxyequol and vestitol. Tetrahedron Lett, 2008, 49(18): 2974-2978.

[5] Li S R, Chen PY, Chen L Y, et al. Synthesis of haginin E, equol, daidzein, and formononetin from resorcinol via an isoflavene intermediate. Tetrahedron Lett, 2009, 50(18): 2121-2123.

[6] Heemstra J M, Kerrigan S A, Doerge D R, et al. Total synthesis of S-equol. Org Lett, 2006, 8: 5441-5443.

[7] Takashima Y, Kaneko Y, Kobayashi Y. Synthetic access to optically active isoflavans by using allylic substitution. Tetrahedron, 2010, 66(1): 197-207.

[8] Walsh K R, Failla M L. Transport and metabolism of equol by Caco-2 human intestinal cells. J Agric Food Chem, 2009, 57: 8297-8302.

[9] Jackson R L, Greiwe J S, Schwen R J. Emerging evidence of the health benefits of S-equol, an estrogen receptor beta agonist. Nutr Rev, 2011, 69 (8): 432-448.

[10] Setchell K D, Clerici C. Equol: history, chemistry, and formation. J Nutr, 2010, 140(7): 1355S-1362S.

[11] Schroder C, Matthies A, Engst W, et al. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl Environ Microbiol, 2013, 79(11): 3494-3502.

[12] Du H, Huang Y, Tang Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol, 2010, 86(5): 1293-1312.

[13] Tsuji H, Moriyama K, Nomoto K, et al. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS. Appl Environ Microbiol, 2012, 78(4): 1228-1236.

[14] Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134(6): 3234-3241.

[15] Shimada Y, Yasuda S, Takahashi M, et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Appl Environ Microbiol, 2010, 76(17): 5892-5901.

[1] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[2] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[3] MEI Xue-ang, CHEN Yan, WANG Rui-zhao, XIAO Wen-hai, WANG Ying, LI Xia, YUAN Ying-jin. Engineered Yeast Cell for Producing Zeaxanthin[J]. China Biotechnology, 2016, 36(8): 64-72.
[4] WANG Rui-zhao, PAN Cai-hui, WANG Ying, XIAO Wen-hai, YUAN Ying-jin. Design and Construction of highβ-carotene Producing Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(7): 83-91.
[5] ZHANG Wen-qian, XIAO Wen-hai, ZHOU Xiao, WANG Ying. Effect of Post-squalene Genes on the Synthesis of 7-Dehydrocholesterol in the Artificial Saccharomyces cerevisiae[J]. China Biotechnology, 2016, 36(6): 39-50.
[6] KE Xia, DING Guan-jun, SUN Jun, Wang Lu, ZHENG Yu-guo. Vitamin D3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis[J]. China Biotechnology, 2016, 36(5): 89-96.
[7] LIANG Xin-quan, LI Ning, REN Qin, LIU Ji-dong. Progress in the Metabolic Engineering of Saccharomyces cerevisiae for L-lactic Acid Production[J]. China Biotechnology, 2016, 36(2): 109-114.
[8] CHENG Cai-hong, DU Ting, CHEN Ke-quan, LI Yan. Recombinant Expression of ε-Lysine Acylase from Streptomyces mobaraensis for Synthesis of Nε-lauroyl-L-lysine[J]. China Biotechnology, 2016, 36(2): 62-67.
[9] LIU Bao-li, LIU Gao-gang, LIN Qiu-hui, LI Bing-zhi, YUAN Ying-jin. Construction of Recombinant Xylose-utilizing Saccharomyces cerevisiae by Three-plasmid Co-transformation Combinatorial Screening Method[J]. China Biotechnology, 2016, 36(12): 86-97.
[10] ZHONG Cheng, LIU Ling-pu, LI Qing-liang, YANG Pan-fei, HAO Jun-guang, JIA Shi-ru. Analyze the Mechanism of Flavor Compounds Formation Using Metabonomics Method During Industrial Beer Fermentation[J]. China Biotechnology, 2016, 36(12): 49-58.
[11] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[12] ZHANG Xu, DING Jian, GAO Peng, GAO Min-jie, JIA Lu-qiang, TU Ting-yong, SHI Zhong-ping. Fed-batch Culture of Saccharomyces cerevisiae with Adaptive Control Based on Differential Evolution Algorithm[J]. China Biotechnology, 2016, 36(1): 68-75.
[13] SUN Huan, JIA HAI-yang, FENG XU-dong, LIU Yue-qin, LI Chun. Screening of Heat-resistant Device in Saccharomyces cerevisiae[J]. China Biotechnology, 2015, 35(3): 75-83.
[14] MA Chen-lu, TANG Cun-duo, SHI Hong-ling, WANG Rui, YUE Chao, XIA Min, WU Min-chen, KAN Yun-chao. Semi-rational Modification of Cephalosporin C Acylase and Biosynthesis of 7-ACA[J]. China Biotechnology, 2015, 35(12): 65-71.
[15] ZHANG Xu, WANG Jing-jing, LIU Jian-ping. The Optimization of Saccharomyces cerevisiae Expression System by Mutagenesis of Promoter and Host Strain[J]. China Biotechnology, 2015, 35(1): 61-66.