Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (3): 109-113    DOI: 10.13523/j.cb.20140316
    
The Sorangium Cellulosum Immobilized by Porous Ceramic Fermentation for Epothilone Preparation
GONG Guo-li, LIU Li-li, WANG Na
College of life science and engineering, Shaanxi university of science&technology, Xi'an 710021, China
Download: HTML   PDF(802KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  The Epothilone,produced by Sorangium cellulosum,has great medicinal value,however,the change of growth form on Sorangium cellulosum has limited the mass produce of Epothilone in the liquid circumstance.the porous structure of porous ceramic can provide a solid attachment and growth surface,then improve the production of Epothilone. The diatomite-based porous ceramics was made from diatomite by adding pore-making agent method.After optimized the preparation and modified conditions,it is found that best prescription contains 2.5% of 30 mesh pore-forming agent of wood powder(mass fraction),the forming pressure at 7MPa,the performance of porous ceramics are pore diameter 5 μm,specific surface 23.55 m2/g,porosity 32% and mechanical strength 10.2MPa.The adsoption capacity of porous ceramics,which is modified by 1.5mol/L FeCl3,is 36.8mg/g.The optimal immobilized fermentation condition is:the liquid volum 45mL in the 300mL flask,the porous ceramics 2.7g modified by 1.5mol/L FeCl3, inoculum 10%, temperature 30℃,shaking speed 220r/min,initial pH 7.5 and fermentation time 8d. the Epothilone production reached 90.2mg/L,which is increased 4 times.

Key wordsSorangium cellulosum      Epothilone      Porous ceramic      Modified     
Received: 16 December 2013      Published: 25 March 2014
ZTFLH:  Q93-335  
Cite this article:

GONG Guo-li, LIU Li-li, WANG Na. The Sorangium Cellulosum Immobilized by Porous Ceramic Fermentation for Epothilone Preparation. China Biotechnology, 2014, 34(3): 109-113.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140316     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I3/109

[1] Davies J, Ryan K S. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 2012, 7(2): 252-259.
[2] Li Z F, Li Y Z. Evolutionary diversity of ketoacyl synthases in cellulolytic myxobacterium Sorangium. Syst Appl Microbiol. 2007, 30: 189-196.
[3] Dworkin M. Recent advances in the social and developmental biology of the Myxobacteria. Microbiol Revs, 1996, 60: 70-102.
[4] Diez J, Martinez J P, Mestres J, et al. Myxobacteria: natural pharmaceutical factories. Microb Cell Fact. 2012, 11: 52-54.
[5] Roche H, Yelle L, Cognetti F, et al. Phase clinical trial of ixabepilone (BMS-247550), an epothilone B analog, as first-line therapy in patients with metastatic breast cancer previously treated with anthracycline chemotherapy.J Clin Oncol, 2007, 25(23): 3415-3420.
[6] 王利军, 胡海峰.埃博霉素B、D及其衍生物的研究进展.世界临床药物, 2011, 32(7). Wang L J, Hu H F. Research progress of epothilone B, D and their derivaties. World Clinical Drugs, 2011, 32(7).
[7] 龚国利.粘细菌的Genome shuffling 育种技术及其埃博霉素的高产菌株改良.济南:山东大学.2007. Gong G L. Genome shuffing breeding of Myxobacteria and mutation of high epothilonestrains. Ji Nan: Shandong University, 2007.
[8] 朱华清, 廖润华.多孔陶瓷的微生物固定化性能分析及探讨.中国陶瓷工业, 2005, 12(6):22-25. Zhu H Q, Liao R H.Research on the performance of porous ceramics as the carrier of immobilized microbe.China Ceramic Industry, 2005, 12(6): 22-25.
[9] 王建龙.生物固定技术与水污染控制.北京:科学出版社, 2002:28-31. Wang J L. Immobilization technology and pollution control of water. Bei Jing: Science Press, 2002: 28-31.
[10] 巫红平, 吴任平等.硅藻土基多孔陶瓷的制备及研究. 硅酸盐通报.2009, 28(4):641-645 Wu H P, Wu R P, etal. Preparation and research of porous ceramics from diatomite. Bulletnof the Chinese Ceramic Society, 2009, 28(4): 641-645.
[11] Catarina A, Tomas B, Pedro M F, et al.Use of two different carriers in a packed bed reactor for endopolygalacturonase production by a yeast strain.Process Biochemistry, 2005, 40.
[12] 赵玉华, 贾莹, 张旭.改性滤料去除有机物静态吸附试验研究.沈阳建筑大学学报, 自然科学版, 2007, 23(5):814-817. Zhao Y H, Jia Y, Zhang X. Experimental study on static absorption of organic matter removal by modified filter media. Journal of Shenyang JianzhuUniversity(Natural Science), 2007, 23(5): 81-817.
[13] 钱乐天, 周逸卿, 邹珍友, 等.微生物扫描电镜样品清洗方法的改进与固定干燥方法的比较.安徽农业科学, 2009, 37(23):182-186. Qian L T, Zhou Y Q, Zou Z Y, et al. Improvement of bathing method of microorganism samples for SEM and comparison of their fixing and dryness methods. Journal of Anhui Agri. Sci, 2009, 37(23): 182-186.
[14] 张龙翔, 生化试验方法和技术.高等教育出版社, 1997:1-3. Zhang L X. Biochemical Test Methods and Techniques. Beijing:Higher Education Press, 1997: 1-3.
[15] 龚国利.粘细菌的Genome shuffling 育种技术及其埃博霉素的高产菌株改良.济南:山东大学.2007. Gong G L. Screening and Beeding of High Epothilone Producing Strains by Improvement of Genome Shuffling. Jinan:Shandong University.2007.
[16] 王延亮, 卢育新, 丁小军, 等.高效液相色谱法分析微生物代谢物埃博霉素B的产量.中国生化药物杂志, 2008, 29(3):197-199. Wang Y L, Lu Y X, Ding X J, et al. Quantitative analysis of microbic metabolin EpoB by high performance liquid chromatography. China Journal of Biochemical Pharmaceutics, 2008, 29(3):197-199.
[1] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[2] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[3] Lin-jie XU,Pei lei LIU,Wen-long LI,Zhuo-jing SUN,Gui-wen SONG. Analysis of the Recent Trends of International Labeling Policies for Genetically Modified Products and the Enlightenment to China’s Labeling Management[J]. China Biotechnology, 2018, 38(9): 94-98.
[4] You-hua WANG,Jing-jing CAI,Ming YANG,Tian ZHANG,Hong-mei REN,Wan-nong ZOU,Guo-qing SUN. Global Patent Analysis and Technology Prospect of Genetically Modified Soybean[J]. China Biotechnology, 2018, 38(2): 116-125.
[5] Shuai CUI,Zuo-ping WANG,Jiang-hui YU,Guo-ying XIAO. Event-specific Detection Methods of Genetically Modified Rice BPL9K-2[J]. China Biotechnology, 2018, 38(11): 32-41.
[6] XU Zhen-yu, REN Hong-yan, BI Yan-zhen, ZHENG Xin-min, LI Li, ZHANG Jia-lan. Establishment of the Single-cell PCR System and Its Application in the Target-activity Detection of CRISPR/Cas9 System[J]. China Biotechnology, 2017, 37(2): 74-80.
[7] XIA Qi-yu, LI Mei-ying, YANG Xiao-liang, XIAO Su-sheng, HE Ping-ping, GUO An-ping. Immunochromatography Test Strip and Its Applications in Detection of Genetically Modified Organisms[J]. China Biotechnology, 2017, 37(2): 101-110.
[8] SHEN Ping, ZHANG Qiu-yan, LIN You-hua, LI Wen-long, LI Ang, SONG Gui-wen. Thinking to Promote the Industrialization of Genetically Modified Corn of Our Country[J]. China Biotechnology, 2016, 36(4): 24-29.
[9] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[10] ZHU Qiao yan. Genetically Modified Rice Tasting: Public Participation in Science in Chinese Context[J]. China Biotechnology, 2016, 36(11): 122-130.
[11] PANG Jin-hui, MA Cai-yun, FENG Yong-li, HU Rui-fa. Biosafety of Genetically Modified Crops: Scientific Evidence[J]. China Biotechnology, 2016, 36(1): 122-138.
[12] SHEN Ping, LI Ang, ZHANG Qiu-yan, LI Wen-long, SONG Gui-wen. Overview for Genetically Modified Organisms Detection Reference Materials in China[J]. China Biotechnology, 2015, 35(4): 107-111.
[13] LI Li-juan, MA Gui-ping, ZHAO Lin-guo. Research Progress of Immobilized Enzyme Carriers[J]. China Biotechnology, 2015, 35(11): 105-113.
[14] LIN Na, GAO Ji-hai, AI Tao-bo, FAN Lin-hong, WANG Sheng-hua, CHEN Fang. A Novel Method of Total RNA Extraction from Leaves of Cinnamomum longepaniculatum[J]. China Biotechnology, 2013, 33(5): 107-111.
[15] HUANG Xue-tao, YANG Jun, DONG Wan-lu, WANG Xiao-bing. Low Level Presence of Genetically Modified Crops: Policies and Implications[J]. China Biotechnology, 2013, 33(4): 149-155.