Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (3): 56-60    DOI: 10.13523/j.cb.20140308
    
Effects of bmy Gene knockout on Hemolysis and Antifungal activity of Bacillus amyloliquefaciens Q-426
TAO Si-mei1,2, ZHENG Wei1,2, ZHAO Peng-chao3, ZHOU Wei1,2, QUAN Chun-shan1,2, FAN Sheng-di1,2
1. Department of Life Science, Dalian Nationalities University, Dalian 116600, China;
2. SEACME Key laboratory, Dalian 116600, China;
3. Department of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
Download: HTML   PDF(588KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Iturin family of lipopeptides has strong antifungal activity against pathogenic fungi such as Trichophyton rubrum and has potential to become a new antifungal drug currently used against dermatophytes. Bacillus amyloliquefaciens Q-426 could produce fengycins and bacillomycin D (a member of iturin family), and its fermentation broth shows a hemolytic activity. In order to determine whether bacillomycin D is the main hemolytic substances, a homologous recombinantion gene knockout technology was used to construct strain Q-426-Δ-bmy. Bacillomycin D was not detected in the Q-426-Δ-bmy strain fermentation broth, and there was a significant reduction in the hemolysis and antifungal activity in contrast with wild strain Q-426, indicating that bacillomycin D is closely related to hemolytic activity and antifungal activity of Bacillus amyloliquefaciens Q-426.

Key wordsCyclic lipopeptides      Gene knockout      bmy gene      Hemolysis      Antifungal activity     
Received: 17 December 2013      Published: 25 March 2014
ZTFLH:  Q78  
Cite this article:

TAO Si-mei, ZHENG Wei, ZHAO Peng-chao, ZHOU Wei, QUAN Chun-shan, FAN Sheng-di. Effects of bmy Gene knockout on Hemolysis and Antifungal activity of Bacillus amyloliquefaciens Q-426. China Biotechnology, 2014, 34(3): 56-60.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140308     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I3/56

[1] 牛力轩, 王楠, 王雪梅, 等. 一株产脂肽类抗生素bacillopeptin A深海芽孢杆菌的筛选与鉴定. 中国抗生素杂志, 2011, 36(10): 738-750. Niu L X, Wang N, Wang X M, et al. Screening and identification of a deep-sea derived Bacillus sp. Producing lipopeptidebacillopeptin A. Chinese Journal of Antibiotics, 2011, 36(10): 738-750.
[2] Zheng G, Slavik M F. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol, 1999, 28(5): 363-367.
[3] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 2008, 140(1-2): 27-37.
[4] Aperce C C, Burkey T E, KuKanich B, et al. Interaction of Bacillus species and Salmonella enterica serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. J Anim Sci, 2010, 88(5): 1649-1656.
[5] Cotta S R, da Mota F F, Tupinambá G, et al. Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol, 2012, 28: 953-962.
[6] Jennings M B, Weinberg J M, Koestenblatt E K, et al. Study of clinically suspected onychomycosis in a podiatric population. J Am Podiatr Med Assoc, 2002, 92 (6): 327-330.
[7] Zhao P C, Quan C S, Wang Y G, et al. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. Sp. Spinaciae. J Basic Microbiol, 2013, doi: 10. 1002/jobm. 201200414.
[8] 刁兆玉, 成鹏, 王仲妮. 表面活性剂溶血作用的研究进展. 食品与药品, 2010, 12(3): 125-129. Diao Z Y, Cheng P, Wang Z N. Progress on Hemolytic Action of Surfactants. Food and Drug, 2010, 12(3): 125-129.
[9] 赵朋超, 权春善, 金黎明, 等. 氮源和碳源对解淀粉芽孢杆菌Q-426抗菌脂肽 合成的影响. 中国生物工程杂志, 2012, 32(10): 50-56. Zhao P C, Quan C S, Jin L M, et al. Effects of Different Nitrogen and Carbon Sources on the Production of Antifungal Lipopeptides from Bacillus amyloliquefaciens Q-426. China Biotechnology, 2012, 32(10): 50-56.
[10] Valérie L, Romain M, Max B, et al. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Arch Microbiol, 2006, 186: 475-483.
[11] Matsuyama T, Kaneda k, Nakagawa Y, et al. A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens. J Bacteriol, 1992, 174(6):1769-1776.
[12] Isabelle V G, Alexey N, Luis A, et al. Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Applied and Enivironmental Microbiology, 2010, 76(3): 910-921.
[1] GUO Sheng-nan, LI Xin-xiao, WANG Feng, LIU Kun-mei, DING Na, HU Qi-kuan, SUN Tao. Establishment and Identification of the Neocortex and Hippocampus GABRG2 Knockout Mice and Its Preliminary Study in Generalized Epilepsy with Febrile Seizures Plus[J]. China Biotechnology, 2020, 40(3): 9-20.
[2] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[3] WU Guo-guo,SONG Shu-ting,YUE Rong,ZHANG Jing,GUAN Ying,WANG Yue,LIU Bao-ai,LV Xue-min,WEI Jian-jun,ZHANG Hui-tu. Application of Counterseletable Gene upp in Genetic Manipulation of Streptomyces fungicidicus[J]. China Biotechnology, 2019, 39(11): 78-86.
[4] LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System[J]. China Biotechnology, 2019, 39(10): 67-74.
[5] Chun-xiao SU,Xiao-yu ZHANG,Han ZENG,Ya-xi CHEN,Xiong-zhong RUAN,Ping YANG. Establishment and Identification of Liver-Specific CD36 Knockout Mice[J]. China Biotechnology, 2018, 38(8): 26-33.
[6] Yu-rui SHENG,Bin LI,Bin WANG,Di ZUO,Lin MA,Xiao-fan REN,Le GUO,Kun-mei LIU. The Construction of AEG-1-Knockout U251 Cell Line by CRISPR/Cas9 Technology and Study of The Effect of AEG-1 on the Metastasis in U251 Cells[J]. China Biotechnology, 2018, 38(10): 38-47.
[7] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[8] DU Hong-yan, LI Tian-ming, LIU Jin-lei, FENG Hui-yong. Construct the Uracil Phosphoribosyl Transferase Gene Mutant Strain in Gluconobacter suboxydans for Seamless Genome Editing[J]. China Biotechnology, 2016, 36(7): 64-71.
[9] HAN Hai hong, WANG Jun qing, WANG Teng fei, XIAO Jing, HAN Deng lan, WANG Rui ming. Method and Application of Gene Knockout Based Single Cross in Bacillus licheniformis 20085[J]. China Biotechnology, 2016, 36(11): 63-69.
[10] CHANG Yu-mei, HOU Zhan-ming . Research on Gene Knockout and Function of FgPDE1 in Fusarium graminearum[J]. China Biotechnology, 2015, 35(8): 59-67.
[11] SHEN Dong-ling, SHANG Shu-mei, LI Wei-na, YAN Jin-ping, HANGAN Ir-bis. Characterization of the Disrupted ack Genes on Fermentation by Thermoanaerobacterium calidifontis Rx1[J]. China Biotechnology, 2015, 35(7): 37-44.
[12] GE Gao-shun, ZHANG Li-chao, ZHAO Xin, HU Xue-jun, LI Ya-jie. Optimization of the Method for Scarless Gene Knockout in Escherichia coli Genome[J]. China Biotechnology, 2014, 34(06): 68-74.
[13] SHAO Zi-jing, JIANG Nan, YAN Hua-li, ZHAN Cheng, XU Ying, CHEN Fang. The Soluble Prokaryotic Expressed Ribosome-inactivating Protein Curcin2 with Anti-fungal Activity from Jatropha curcas L.[J]. China Biotechnology, 2013, 33(7): 43-49.
[14] YE Xiang-li, LI Da-li. Rapid Construction of GPR126 Conditional Gene-targeting Vector[J]. China Biotechnology, 2013, 33(4): 106-113.
[15] JIANG Na, WANG Yan-Chun, MA Zhi-Hong, LUO Lin, LIU Chun-Jie. A Novel Temperatrue Sensitive Plasmid-based Method for Deletion of Chromosomal Genes[J]. China Biotechnology, 2010, 30(03): 85-89.