Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (11): 81-85    DOI:
    
The Role of Acid Stress on Improved Performance of Selenium/glutathione-Enriched Candida utilis
WANG Da-hui, XU Hong-qing, WANG Cheng-fu, WEI Gong-yuan
School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
Download: HTML   PDF(581KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Intracellular organic selenium and glutathione contents are the two most important characteristics of high performance of selenium-enriched yeast. In order to improve the performance of selenium/glutathione-enriched Candida utilis, the effects of diverse pH conditions on cell growth, glutathione biosynthesis and the biotransformation of inorganic selenium to organic selenium during selenium enrichment were investigated. It was indicated that the moderate acid stress was favor of the increased intracellular contents of organic selenium and glutathione, as well as the decreased level of the oxidized compound as malondialdehyde. The maximum levels of the intracellular organic selenium and glutathione were obtained at pH 3.5 as 1.13 mg/g and 12.3 mg/g, respectively. Based on the analysis of residual methionine in the medium, intracellular pH, the ratios of NADH/NAD+ and ATP/ADP, the reason of the improved performance of selenium/glutathione-enriched Candida utilis by moderate acid stress were partly interpreted. The results presented will give a feasible approach for further enhanced nutrimental function of Candida utilis.

Key wordsSelenium-enriched yeast      Glutathione      Acid stress      Organic selenium      Co-factor     
Received: 03 September 2013      Published: 25 November 2013
ZTFLH:  Q939.97  
  S816.7  
Cite this article:

WANG Da-hui, XU Hong-qing, WANG Cheng-fu, WEI Gong-yuan. The Role of Acid Stress on Improved Performance of Selenium/glutathione-Enriched Candida utilis. China Biotechnology, 2013, 33(11): 81-85.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I11/81

[1] Schrauzer G N. Selenium yeast: composition, quality, analysis, and safety. Pure and Applied Chemistry, 2006, 78(1): 105-109.
[2] 范秀英, 郭雪娜, 傅秀辉, 等. 高生物量富硒酵母的选育及培养条件初步优化. 生物工程学报, 2003, 19(6): 720-724. Fan X Y, Guo X N, Fu X H, et al. The breeding and culture condition optimization of a high biomass, selenium-enriched yeast strain. Chinese Journal of Biotechnology, 2003, 19(6): 720-724.
[3] Suhajda A, Hegóczki J, Janzsó B, et al. Preparation of selenium yeasts I. preparation of selenium-enriched yeast Saccharomyces cerevisiae. Journal of Trace Element in Medicine and Biology, 2000, 14 (1): 43-47.
[4] 王大慧, 葛晓光, 卫功元, 等. 高性能富硒产朊假丝酵母的制备. 食品与发酵工业, 2011, 37(6): 106-109. Wang D H, Ge X G, Wei G Y, et al. Culture strategy on the preparation of high quality selenium-enriched Candida utilis. Food and Fermentation Industries, 2011, 37(6): 106-109.
[5] Wang D, Yang B, Wei G, et al. Efficient preparation of selenium/glutathione-enriched Candida utilis and its biological effects on rats. Biological Trace Element Research, 2012, 150(1): 249-257.
[6] Yang B, Wang D, Wei G, et al. Selenium-enriched Candida utilis: efficient preparation with L-methionine and antioxidant capacity in rats. Journal of Trace Element in Medicine and Biology, 2013, 27(1): 7-11.
[7] Koebmann B J, Nilsson D, Kuipers O P, et al. The membrane-bound H-ATPase complex is essential for growth of Lactococcus lactis. Journal of Bacteriology, 2000, 182: 4738-4743.
[8] Cotter P D, O'Reilly K, Hill C. Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. Journal of Food Protection, 2001, 64(9): 1362-1368.
[9] Fozo E M, Quivey R G Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Applied and Environmental Microbiology, 2004, 70: 929-936.
[10] Zhang J, Fu RY, Hugenholtz J, et al. Glutathione protects Lactococcus lactis against acid stress. Applied and Environmental Microbiology, 2007, 73: 5268-5275.
[11] Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. Journal of Applied Microbiology, 2011, 110(1): 44-53.
[12] 董颖颖, 卫功元, 张君丽, 等. 谷胱甘肽生物合成过程中酸胁迫的作用及其机制. 化工学报, 2011, 62(11): 3228-3235. Dong Y Y, Wei G Y, Zhang J L, et al. Mechanism and effect of acid stress on glutathione biosynthesis by Candida utilis. CIESC Journal, 2011, 62(11): 3228-3235.
[13] Wang Y L, Wang D H, Wei G Y, et al. Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate. Bioresource Technology, 2013, 131: 28-32.
[14] Hoefel D, Grooby W L, Monis P T, et al. A comparative study of carboxyfluorescein diacetate and carboxyfluorescein diacetate succinimidyl ester as indicators of bacterial activity. Journal of Microbiological Methods, 2003, 52(3): 379-388.
[15] 杨波, 刘志奎, 卫功元, 等. 培养方式对富硒产朊假丝酵母性能的影响. 生物加工过程, 2012, 10(4): 7-11. Yang B, Liu Z K, Wei G Y, et al. Effects of cultivation modes on performance of selenium-enriched Candida utilis. Chinese Journal of Bioprocess Engineering, 2012, 10(4): 7-11.
[16] Mapelli V, Hillestrem P R, Kápolna E, et al. Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metabolic Engineering, 2011, 13(3): 282-293.
[17] Brosnan J T, Brosnan M E, Bertolo R F P, et al. Methionine: a metabolically unique amino acid. Livestock Science, 2007, 112(1-2): 2-7.
[1] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[2] ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin. Study on the VC One Step Fermentation Under Glutathione[J]. China Biotechnology, 2016, 36(8): 38-45.
[3] HU Yan-zhen, WEI Jun-ying, LUO Guang-ming. Research on Glutathione-related Signaling Pathway in Liver Diseases[J]. China Biotechnology, 2015, 35(10): 72-77.
[4] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.
[5] WANG Cheng, SUI Chun-hong, YAN Gang-lin, LÜ Shao-wu, MU Ying. Cysteine Auxotrophic Expression and Identification of Antiviral Selenium-containing Peptide[J]. China Biotechnology, 2014, 34(4): 16-20.
[6] WEI Lv-Chun, LI Shuang, XU Qing. Response and Resistance of Acid Stress in Industry Microbiology[J]. China Biotechnology, 2014, 34(3): 132-137.
[7] JIA Cui-cui, JI Jing, WANG Gang, TIAN Xiao-wei, DU Xi-long, GUAN Chun-feng, JIN Chao, WU Dian-yun. Over-expression of Glutathione Synthetase Gene Enhances Cadmium Tolerance in Transgenic Tobacco Plant[J]. China Biotechnology, 2014, 34(10): 79-86.
[8] WANG Yu-lei, ZHU Jian, WEI Gong-yuan, XU Hong-qing, WANG Cheng-fu. Increased Co-production of S-adenosylmethionine and Glutathione by Sodium Citrate Addition[J]. China Biotechnology, 2013, 33(8): 51-55.
[9] LUO Er-mei, YU Li, ZHANG Jia-wen, LIU Jing. The Effect of Reduced Glutathione to the Chondrogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells[J]. China Biotechnology, 2013, 33(3): 1-8.
[10] CHEN Yong-lu, WU Mian-bin, LIN Jian-ping, YANG Li-rong, CEN Pei-lin. Characterization of GshF Expressed in Escherichia coli[J]. China Biotechnology, 2013, 33(12): 21-28.
[11] LIU Guan-Lan, LI Tian, LIU Jin-Yuan, YAN Ze-Min, DUAN Meng-Xing. Protection Effects of Prokaryotic Expressed Radish Phospholipid Hydroperoxide Glutathione Peroxidase and Glutathione on Hydroperoxidemediated Injury in Mouse NIH3T3 Fibroblasts[J]. China Biotechnology, 2010, 30(09): 13-18.
[12] CENG Wei-Jun, WANG Shui-Beng, LI Xiao-Fang, XU Ping, WANG Rui-Gang. A Set of Genes Up-regulated by Cadmium Ions and Their Function under Cadmium Stress in Arabidopsis thaliana[J]. China Biotechnology, 2010, 30(05): 49-56.
[13] . Screening and Metabolic Flux Analysis of Glutathione-high-yielding strain from Saccharomyces cerevisiae[J]. China Biotechnology, 2008, 28(7): 110-115.
[14] . Cultural Conditions for Production of Glutathione by Mutant Saccharomyces J-X25[J]. China Biotechnology, 2006, 26(07): 48-51.