Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 94-104    DOI: 10.13523/j.cb.20150914
    
Mechanism of Heavy Metal Tolerance Stress of Plants
LI Yang, YU Li-jie, JIN Xiao-xia
College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
Download: HTML   PDF(656KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Heavy metals are a class of pollutants that may produce certainly toxic actions towards plants, plants have evolved mechanisms of heavy metal stress tolerance in long-term evolution. Based on plant heavy metal tolerance, making a brief overview that the study of tolerance mechanisms of plant response to heavy metal stress at home and abroad in recent years. The molecular mechanism that stress effects of heavy metals on plants, plant antioxidant systems, osmotic adjustment substance including proline, soluble sugar or protein, and different types of gene families under heavy metal are mainly discussed. In order to improve the ability of plant resistance to heavy metals and help phytoremediation.



Key wordsPlant      Heavy metals stress      Antioxidant systems      Osmotic adjustment substance      Gene families     
Received: 14 May 2015      Published: 25 September 2015
ZTFLH:  Q19  
Cite this article:

LI Yang, YU Li-jie, JIN Xiao-xia. Mechanism of Heavy Metal Tolerance Stress of Plants. China Biotechnology, 2015, 35(9): 94-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150914     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/94


[1] 李进学, 曹虎, 张芬琴, 等. Cu2+和Zn2+对普通小麦幼苗生长的影响. 植物资源与环境学报, 2005, 14 (4) : 59-60. Li X J, Cao H, Zhang F Q, et al. Effects of Cu2+ and Zn2+ on growth of Triticum aestivum seedling. Journal of Plant Resourcesand Environmen, 2005, 14 (4) : 59-60.

[2] 谭九洲, 黄迎波. 植物重金属耐受分子机理的研究进展. 安徽农业科学, 2014, 42 (35) : 12782-12785. Tan J Z, Huang Y B. Research progress of the molecular mechanism of heavy metal tolerance of plant. Journal of Anhui Agri Sci, 2014, 42 (35) : 12782-12785.

[3] 马生军, 程新宇, 谢景, 等. 锰营养对甘草光合特性和抗氧化酶活性的影响,现代中药研究与实践, 2014, 18 (6) : 7-10. Ma S J, Cheng X Y, Xie J, et al. Effect of different concentration of mn on photosynthetic characteristics and antioxidase activities of Glycyrrhiza uralensis fisch, Antioxidase Activities of Glycyrrhiza uralensis Fisch. Chin Med J Res Prac, 2014, 18 (6) : 7-10.

[4] 侯明, 陈国勇, 梁福晓, 等. 钒胁迫对水稻幼苗生理生化和富集特性的影响, 生态环境学报, 2014, 23 (10) : 1657-1663. Hou M, Chen G Y, Liang X F, et al. Effects of vanadium stress on physiological, biochemical characteristics and enrichment characteristics of rice seedlings. Ecology and Environmental Sciences, 2014, 23 (10) : 1657-1663.

[5] 刘涛. Cd胁迫下桐花树幼苗的解剖结构响应及镉的累积分布变化. 厦门: 厦门大学, 生命科学学院,2012. Liu T. The Response of Anatomy and Cadmium Accumulation Distribution Changes in Aegiceras Corniculatum Seedlings under Cd Stress. Xiamen : Xiamen University, School of Life Sciences,2012.

[6] González-Mendoza D, Espadas y Gil F, Escoboza-Garcia F, et al. Copper stress on photosynthesis of black mangle (Avicennia germinans). Annals of the Brazilian Academy of Sciences, 2013, 85 (2) : 665-670.

[7] 丁刚, 吴海一, 吕芳, 等. Fe3+对鼠尾藻光合呼吸作用和生化组成的影响. 水产养殖, 2014, 25 (10) : 21-26. Ding G, Wu H Y, Lv F, et al. The effects of Fe3+on photosynthesis, respiration and biochemical composition of Sargassum thunbergii. Journal of Aquaculture, 2014, 25 (10) : 21-26.

[8] 张凯, 徐波, 孟昭军, 等. 铜、镉胁迫对杨树叶片中防御蛋白活性的影响. 东北林业大学学报, 2014, 42 (11) : 43-46. Zhang K, Xu B, Meng Z J, et al. Effect of copper and cadmium on defensive protein activity in Poplar leaves. Journal of Northeast Forestry University, 2014, 42 (11) : 43-46.

[9] Minglin L, Yuxiu Z, Tuanyao C. Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene, 2005, 363 (1) : 151-158.

[10] Romero-Puertas M C, Corpas F J, Rodriguez-Serrano M, et al. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol, 2007, 164 (10) : 1346-1357.

[11] Brahim L, Mohamed M. Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. African Journal of Biotechnology, 2011, 10 (50) : 10143-10148.

[12] 崔宏莉, 解静芳, 杨彪, 等.污灌与镉胁迫对菠菜几种抗氧化酶活性的影响. 生态毒理学报, 2010, 5 (2) : 274-279. Cui H L, Xie J F, Yang B. Effects of sewage irrigation and cadmium stresses on the activities of several antioxidant enzymes of spinach. Asian Journal of Ecotoxicology, 2010, 5 (2) : 274-279.

[13] Huang H, Gupta D K, Tian S, et al. Lead tolerance and physiological adaptation mechanism in roots of accumulating and non-accumulating ecotypes of Sedum alfredii. Environ Sci Pollut Res, 2012,19 (5) : 1640-1651.

[14] 张玉秀, 金 玲, 冯珊珊, 等. 镉对镉超累积植物龙葵抗氧化酶活性及基因表达的影响,中国科学院研究生院学报, 2013, 30 (1) : 11-17. Zhang Y X, Jin L, Feng S S, et al. Effects of Cd on activity and gene expression of antioxidant enzymes in hyperaccumulator Solanum nigrum L. Journal of Graduate University of Chinese Academy of Sciences, 2013, 30 (1) : 11-17.

[15] Potters G, Horemans N, Jansen M A. The cellular redox state in plant stress biologya charging concept. Plant Physiol Biochem, 2010, 48 (5) : 292-300.

[16] Wójcik M, Tukiendorf A. Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Plantarum, 2011, 55 (1) : 125-132.

[17] 张宏杰. 铜、铅胁迫对红花生长发育及GSH表达的影响. 河南: 河南师范大学, 生命科学学院,2013. Zhang H J. Effects of Copper and Lead Stress on the Growth and Development and the Expession of Glutathione in Safflower. Henan: Henan Normal University, School of Life Sciences,2013.

[18] 齐君, 吕金印, 李鹰翔, 等. Cr3+胁迫对青菜中植物络合素含量及AsA-GSH 代谢关键酶活性的影响. 农业环境科学学报, 2012, 31 (7) : 1303-1309. Qi J, Lv J Y, Li Y X, et al. Effects of chromium stress on the content of phytochelatins and the activities of key enzymes of ascorbate-glutathione cycle in Brassica chinensis L. Journal of Agro-Environment Science, 2012, 31 (7) : 1303-1309.

[19] 张浩,陆宁,钱晓刚,等.不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响. 贵州农业科学, 2014, 42 (1) : 127-131. Zhang H, Lu N, Qian X G, et al. Effects of different concentrations of heavy metals on tobacco proline content in four soil types. Guizhou Agricultural Sciences, 2014, 42 (1) : 127-131.

[20] Gohari M, Habib-Zadeh A R, Khayat M. Assessing the intensity of tolerance to lead and its effect on amount of protein and proline in root and aerial parts of two varieties of rape seed (Brassica napus L.). Journal of Basic and Applied Scientific Research, 2012, 2 (1) : 935-938.

[21] John R, Ahmad P, Gadgil K, et al. Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 2009, 3 (3) :65-76.

[22] Fidalgo F, Azenha M, Silva A F, et al. Copper-induced stress in Solanum nigrum L. and antioxidant defense systemresponse. Food and Energy Security, 2013, 2 (1) :70-80.

[23] Handique G K, Handique A K. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress. Journal of Environmental Biology, 2009, 30 (2) :299-302.

[24] Zhang J T, Xu M, Han K, et al. Effect of salt stress on plant nutrition and physiology of tamato seedings.Acta Agriculturae Bore-ali-occidentali Sinica, 2011, 20 (2) : 128-133.

[25] 阮晨, 陈晓明, 刘小玲, 等. 4 种草坪植物成苗期Co(Ⅱ)耐受性综合评价, 核农学报, 2015, 29 (4):777-785. Ruan C, Chen X M, Liu X L, et al. Effects of salinity stress on growth an organic osmolytes accumulation of callus and tissue culture seedlings of two malus. Journal of Nuclear Agricultural Sciences, 2015, 29 (4) :777-785.

[26] 丁晓辉,任丽萍,张春荣, 等. Cd2+胁迫对紫花苜蓿叶绿素和可溶性糖含量的影响. 华北农学报, 2007, 22 (增刊) : 64-66. Ding X H, Ren L P, Zhang C R, et al. Effect of Cd2+ stress on the content of chlorophyll and soluble sugar of alfalfa. Acta Agriculturae Boreali-Sinica, 2007, 22 (Suppl) : 64-66.

[27] 张呈祥. 六种地被植物对镉、铅胁迫的响应及积累特性. 山东: 山东农业大学, 资源与环境学院,20112. Zhang C X. Stress responses and accumulation of cadium and lead by six kings of groundcover plants. Shandong : Shandong Agricultural University, College of Resources and Environment,2012.

[28] Margoshes M, Vallee B L. A cadmium protein from equine kidney cortex, Journal of the American Chemical Society, 1957, 79 (17) : 4813–4814.

[29] Du J, Yang J L, Li C H. Advances in metallotionein studies in forest trees. Plant OMICS, 2012, 5 (1) : 46-51.

[30] Lane B, Kajioka R, Kennedy T. The wheat-germ Ec protein is a zinc-containing metallothionein, Biochem Cell Biol, 1987, 65 (11) : 1001-1005.

[31] Lv Y Y, Deng X P, Quan L T, et al. Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil, 2013, 367 (1-2) : 507-519.

[32] Turchia A, Tamantinib I, Camussia A M, et al. Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Science, 2012, 183 (1) : 50-56.

[33] Xia Y, Qi Y, Yuan Y X, et al. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. Journal of Hazardous Materials, 2012, 233-234 (1) : 65-71.

[34] Ferraz P, Fidalgo F, Almeida A, et al. Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved. Plant Physiology and Biochemistry, 2012, 57 (1) : 254-260.

[35] Kim Y O, Patel D H, Lee D S, et al. High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco bioscience. Biosci Biotechnol Biochem, 2011, 75 (10) : 1912-1920.

[36] Kim Y O, Jung S, Kim K, et al. Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress plant. Physiol Biochem, 2013, 64 (1) : 25-32.

[37] Sekhar K, Priyanka B, Reddy V D, et al. Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environmental and Experimental Botany, 2011, 72 (2) : 131-139.

[38] Nezhad R M, Shahpiri A, Mirlohi A. Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J, 2013, 32 (2) : 131-137.

[39] Guo J L, Xu L P, Su Y C, et al. ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. BioMed Research International, 2013, 1 (1) : 1-12.

[40] Manara A. Plant responses to heavy metal toxicity. Plants and Heavy Metals, 2012, 2 (1) : 27-53.

[41] Gupta D K, Vandenhove H, Inouhe M. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. Heavy Metal Stress in Plants, 2013, 1 (1) : 73-94.

[42] Heiss S, Wachter A, Bogs J, et al. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. Journal of Experimental Botany, 2003, 54 (389) : 1833-1839.

[43] Szalai G, Krantev A, Yordanova R, et al. Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turkish Journal of Botany, 2013, 37 (4) : 708-714.

[44] Batista B L, Nigar M, Mestrot A, et al. Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. The Journal of Experimental Botany, 2014, 65 (6): 1467-1479.

[45] Guo J B, Xu W Z, Ma M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. Journal of Hazardous Materials, 2012, 1 (199-200) : 309-313.

[46] Gaillard S, Jacquet H, Vavasseur A, et al. AtMRP6 AtABCC6 an ATP-binding cassette transporter gene expressed during early steps of seedling development and up-regulated by cadmium in Arabidopsis thaliana. BMC Plant Biology, 2008, 8 : 1-11.

[47] Chen S X, Sánchez-Fernández R, Lyver E R, et al. Functional Characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half-molecule ATP-binding cassette transporters implicated in iron homeostasis. The Journal of Biological Chemistry, 2007, 282 (29) : 21561-21571.

[48] 邵若玄, 沈忆珂, 周文彬, 等. 植物ATP结合盒(ABC)转运蛋白研究进展. 浙江农林大学学报, 2013, 30 (5) : 761-768. Shao R X, Shen Y K, Zhou W B, et al. Recent advances for plant ATP-binding cassette transporters. Journal of Zhejiang Forest University, 2013, 30 (5) : 761-768.

[49] Lee M, Lee K, Lee J, et al. AtPDR12 contributes to lead resistance in arabidopsis. Plant Physiol, 2005, 138 (2) : 827-836.

[50] 金枫, 王翠, 林海建, 等. 植物重金属转运蛋白研究进展. 应用生态学报, 2010, 21 (7) : 1873-1882. Jin F, Wang C, Lin H J, et al. Heavy metal-transport proteins in plants : A review. Chinese Journal of Applied Ecology, 2010, 21 (7) : 1873-1882.

[51] Rastgoo L, Alemzadeh A, Afsharifar A. Isolation of two novel isoforms encoding zinc- and copper-transporting P1B-ATPase from gouan (Aeluropus littoralis). Journal Plant Omics, 2011, 4 (7): 377-383.

[52] Wong C K E, Cobbett C S. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytologist, 2009, 181 (1) : 71-78.

[53] Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ, 2012, 35 (11) : 1948-1957.

[54] Grispen M J V, Hakvoort H W J, Bliek T, et al. Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environmental and Experimental Botany, 2011, 72 (1): 71-76.

[55] Mills R F, Peaston K A, Runions J, et al. HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. Plos One, 2012, 7 (8) : 1-14.

[56] Andrés-Colás N, Perea-Garcia A, Puig S, et al. Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology, 2010, 153 (1) : 170-184.

[57] Wong C K E, Jarvis R S, Sherson S M, et al. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytologist, 2009, 181 (1) : 79-88.

[58] Mills R F, Francini A, Ferreira da Rocha P S, et al. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Letters, 2005, 579 (3) :783-791.

[59] Satoh-Nagasawa N, Mori1 M, Nakazawa N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol, 2012, 53 (1) : 213-224.

[60] Bkgaard L, Mikkelsen M D, Sørensen D M, et al. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. The Journal of Biological Chemistry, 2010, 285 (41) : 31243-31252.

[61] Morel M, Crouzet J, Gravot A, et al. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiology, 2009, 149 (2) : 894-904.

[62] Takahashi R, Bashir K, Ishimaru Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signaling Behavior, 2012, 7 (12) : 1605-1607.

[63] 单喆. 星星草PutCAX2在酵母中表达的功能解析. 哈尔滨: 东北林业大学, 生命科学学院,2012. Shan Z. Expression of a cation/H+ exchanger of Puccinellia tenuiflora, PutCAX2, confers Ca2+ and Ba2+ tolerance in yeast. Haerbin : Northeast Forestry University, School of Life Sciences,2012.

[64] Khoudi H, Maatar Y, Gouiaa S, et al. Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. Journal of Plant Physiology, 2012, 169 (1) : 98-103.

[65] Mei H, Cheng N H, Zhao J, et al. Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytologist, 2009, 183 (1) : 95-105.

[66] Wu Q Y, Shigakib T, Williamsa K A, et al. Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. Journal of Plant Physiology, 2011, 168 (2) : 167-173.

[67] Krämer U, Talke I N, Hanikenne M. Transition metal transport. FEBS Lett, 2007, 581 (12) : 2263-2272.

[68] Yuan L Y, Yang S G, Liu B X, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012, 31 (1) : 67-79.

[69] Muthukumar B, Yakubov B, Salt D E. Transcriptional activation and localization of expression of Brassica juncea putative metal transport protein BjMTP1. BMC Plant Biology 2007, 7 (32) : 1-12.

[70] 龚红梅, 沈野. 植物对重金属锌耐性机理的研究进展. 西北植物学报, 2010, 30(3):633-644. Gong H M, Shen Y. Research progress in mechanisms of plant tolerance to zinc, Acta Bot Boreal-Occident Sin, 2010, 30(3):633-644.

[71] Gustin J L, Loureiro M E, Kim D, et al. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. The Plant Journal, 2009, 57 (6) : 1116-1127.

[72] Kawachi M, Kobae Y, Mori H, et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol, 2009, 50 (6) : 1156-1170.

[73] Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J, 2010, 107 (22) : 10296-10301

[74] 郝梦雨, 印度荠菜 BjCRP1 基因的克隆、表达与抗逆性分析. 河北 : 河北农业大学, 生命科学学院,2010. Hao M Y. Cloning, expression and stress resistance analysis of BjCRP1 gene from Brassica juncea L. Hebei : Agricultural University of Hebei Province, School of Life Sciences,2012.

[75] Thomine S, Wang R, Ward J M, et al. Cadmium and iron transport by members of a plant metal transporters family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA, 2000, 97 (9) : 4991-4996.

[76] Thomine S, Lelièvre F, Debarbieux E, et al. AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal, 2003, 34 (5) : 685-695.

[77] Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary ironuptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol, 2011, 52 (8) : 1433-1442.

[78] Assunçãoa A G L, Herreroa E, Lina Y F, et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 2010, 107 (22) : 10296-10301.

[79] Lin Y F, Liang H M, Yang S Y, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 2009, 182 (2) : 392-404.

[80] Suzuki M, Kobayashi1 T, Takahashi M, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 2005, 56 (422) : 3207-3214.

[81] Barberon M, Dubeaux G, Kolb C, et al. Polarization of iron-regulated transporter 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. Proc Natl Acad Sci USA, 2014, 111 (22) : 8293-8298.

[82] Peñarrubia L, Andrés-Colás N, Moreno J, et al. Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator. Journal of Biological Inorganic Chemistry 2010, 15 (1) : 29-36.

[83] Sancenon V, Puig S, Mateu-Andres I, et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry, 2004, 279 (15) : 15348-15355.

[84] Klaumann S, Nickolaus S D, Furst S H,et al. The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 2011, 192 (2) : 393-404.

[85] Garcia-Molina A, Andrés-Colás N, Perea-Garcia A, et al. The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant Journal, 2011, 65 (6) : 848-860.

[86] Andrés-Colás N, Perea-Garcia A, Puig S, et al. Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiology, 2010, 153 (1) : 170-184.

[87] 喻丝丝, 魏林艳, 谢华安, 等. MATE转运蛋白在水稻抗逆作用中的研究进展. 福建农业学报, 2014, 29 (4) :398-405. Yu S S, Wei L Y, Xie A H, et al. Progress on MATE transporters of stress resistance in rice. Fujian Journal of Agricultural Sciences, 2014, 29 (4) :398-405.

[88] Rogers E E, Guerinot M L. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell, 2002, 14 (8) : 1787-1799.

[89] 郭凡瑜. 异源表达SbMATE基因提高苜蓿耐铝特性的研究. 西南大学, 生命科学学院,2013. Guo F Y. Ectopic expression of SbMATE gene to improve the aluminum tolerance in Alfalfa. Southwest University, School of Life Sciences,2013.

[90] Yokosho K, Yamajl N, Ma J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal, 2011, 68 (6) : 1061-1069.

[91] 张建军,胥华伟,周晓垂, 等.非生物胁迫下水稻OsMATE基因表达分析. 热带亚热带植物学报, 2010, 18 (4) : 435-439. Zhang J J, Xu H W, Zhou X C, et al. Expression analysis of OsMATE in rice under abiotic stresses. Journal of Tropicaland Subtropical Botany, 2010, 18 (4) : 435-439.

[92] 王甲水. MaMATE1 基因功能的初步研究. 海南大学, 生命科学学院,2010. Wang J S, Function characterization of MaMATE1, a member of the MATE family from Musa acuminate, Hainan University, School of Life Sciences,2010.

[93] 陈安乐. 大豆发根转化方法的建立及 GmFRD3 在大豆耐铝性中的作用. 吉林大学, 植物科学学院,2014. Chen A L. Establishment of the agrobacterium rhizogenes-mediated transformation of soybean and function of GmFRD3 under Al stress in soybean. Jilin University, School of Plant Sciences,2014.

[94] Schaaf G, Ludewig U, Erenoglu B E, et al. ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem, 2004, 279 (10) : 9091-9096.

[95] Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009, 103 (1) : 1-11.

[96] Gendre D, Czernic P, Conéjéro G, et al. TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotinamine-Ni/Fe transporter. Plant J, 2006, 49 (1) : 1-15.

[97] Krämer U, Smith R D, Wenze W W, et al. The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol, 1997, 115 (4) : 1641-1650.

[98] Schaaf G, Schikora A, Häberle J, et al. A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol, 2005, 46 (5) : 762-774.

[99] DiDonato R J Jr, Roberts L A, Sanderson T, et al. Arabidopsis yellow stripe-like2 (YSL2) : a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J, 2004, 39 (3) : 403-414.

[1] LIU Xu-xia,YANG An-ke. An Analysis of the U.S. SECURE Rule and Its Enlightenment to China[J]. China Biotechnology, 2021, 41(9): 126-135.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[4] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[5] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[6] MA Ya-ting,LIU Zhen-ning,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Advances in Production of Plant Isoquinoline Alkaloids in Heterologous Microbes[J]. China Biotechnology, 2019, 39(11): 123-131.
[7] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[8] Jing-xia LI,Hui XIA,Xiu-lan LV,Jin WANG,Dong LIANG. The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant[J]. China Biotechnology, 2018, 38(3): 105-114.
[9] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[10] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[11] CHEN Gang, WU Jun, ZHU He, YU Tian-fei. Progress of Stem Cell Therapy in Spinal Cord Injury[J]. China Biotechnology, 2017, 37(2): 88-92.
[12] YAN Peng-cheng, ZHANGY Zhan-jiang, PEI Zhi-yong, FU Yan-ting, CHEN Yu-bao, LIU Tong. Design and Realization of Cloud Platform for Medicinal Plant Conservation[J]. China Biotechnology, 2017, 37(11): 37-44.
[13] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.
[14] WANG Xu-jing, ZHANG Xin, LIU Pei-lei, WANG Zhi-xing. The Application and Safety Assessment of Stacked Transgenic Plant[J]. China Biotechnology, 2016, 36(4): 18-23.
[15] HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode[J]. China Biotechnology, 2016, 36(2): 101-108.