Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (8): 126-136    DOI: 10.13523/j.cb.20150818
    
Research Progress of Enhancing Enzymatic Saccharification Efficiency of Lignocellulose
CAO Chang-hai, ZHANG Quan, GUAN Hao, WANG Ling-min, QIAO Kai, TONG Ming-you
Key Laboratory of Biofuels and Biochemical Engineering, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun 113001, China
Download:   PDF(538KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The crucial segment in the process of the conversion of lignocellulose into biofuels and high value-added chemicals is the efficient lignocellulose hydrolysis to afford soluble sugars for subsequent fermentation. From the perspective of environmental protection, enzymatic hydrolysis is an effective way to lignocellulose degradation completely without environmental pollution, furthermore, this method has got widely attention because of its advantages, such as lower sugar loss, fewer by-products and mild conditions. Due to the complex compositions and structures of cellulose and some drawbacks of cellulase itself, such as poor stability, short lifetime and low activity, which make low efficiency and high cost of enzymatic saccharification. Scholars from all over the world have carried out researches in many aspects about how to improve the efficiency of lignocellulose enzymatic saccharification.The latest processes of both theoretical and technological research in recent years were summarized. The influences of pretreatment of lignocellulose, cellulase production strains and technology, cellulase complex and recombination, cellulase additives, cellulase immobilization, external fields, recycling and reuse of cellulase were reviewed, and the prospects on lignocellulose enzymatic saccharification in the future were also presented.



Key wordsLignocellulose      Enzymatic saccharification      Enhancing efficiency     
Received: 23 March 2015      Published: 25 August 2015
ZTFLH:  Q81  
  TK6  
Cite this article:

CAO Chang-hai, ZHANG Quan, GUAN Hao, WANG Ling-min, QIAO Kai, TONG Ming-you . Research Progress of Enhancing Enzymatic Saccharification Efficiency of Lignocellulose. China Biotechnology, 2015, 35(8): 126-136.

URL:

http://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150818     OR     http://manu60.magtech.com.cn/biotech/Y2015/V35/I8/126


[1] ZaldivarJ, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic metabolic engineering and process integration.Applied Microbiology and Biotechnology, 2001, 56(1-2): 17-34.

[2] 陈洪章,邱卫华,邢新会,等. 面向新一代生物基化工产业生物质原料炼制关键过程. 中国基础科学, 2009, (5): 32-37. Chen H Z, Qiu W H, Xing X H, et al. Development of the biomass material refining process for the next generation biological and chemical industries. China Basic Science, 2009, (5): 32-37.

[3] Kamm B, Kamm M. Biorefineries-multi product processes. Advances in Biochemical Engineering/Biotechnology, 2007, 105: 175-204.

[4] 中国科学院生物质资源战略研究组.中国至2050年生物质资源科技发展路线图. 北京: 科学出版社, 2009, 2. Research group on energy of the Chinese Academy of Sciences. Science & Technology on Bio-hylic and Biomass Resources in China: A Roadma Pto 2050. Beijing: Science Press, 2009, 2.

[5] Cheng J J, Timilsina G R. Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 2011, 36(12): 3541-3549.

[6] 方诩, 秦玉琪, 李雪芝, 等. 纤维素酶与木质纤维素生物降解转化的研究进展. 生物工程学报, 2010, 26(7): 864-869. Fang X, Qin Y Q, Li X Z, et al. Progress on cellulase and enzymatic hydrolysis of lignocellulosic. Chinese Journal of Biotechnology, 2010, 26(7): 864-869.

[7] Zhu J Y, Pan X J. Wood biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 2010, 101(13): 4992-5002.

[8] Kim J S, Lee Y Y, Torget R W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology, 2001, 91(3): 331-340.

[9] 王琼, 庄新姝, 余强, 等. 超低马来酸水解纤维素的试验研究. 太阳能学报, 2011, 32(1): 1-7. Wang Q, Zhuang X S, Yu Q, et al. Experimental study on cellulose hydrolysis under extremely low maleic acid. Acta Energiae Solaris Sinica, 2011, 32(1): 1-7.

[10] Zhu J Y, Chandra M S, Gu F, et al. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: A pilot-scale evaluation. Bioresource Technology, 2015, 179: 390-397.

[11] 赵孟娇, 李国民, 徐刚, 等. 高温液态水预处理木质纤维素. 化学与生物工程, 2015, 32(3): 11-17. Zhao M J, Li G M, Xu G, et al. Pretreatment of lignocellulose by hot liquid water. Chemistry&Bioengineering, 2015, 32(3): 11-17.

[12] Yu Q, Zhang X, Yuan Z, et al. Two-ste Pliquid hot water pretreatment of Eucalypus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology, 2010, 101(13): 4895-4899.

[13] 任天宝, 徐桂转, 马孝琴, 等. 蒸汽爆破对玉米秸秆理化特性的影响. 高压物理学报, 2012, 26(2): 227-234. Ren T B, Xu G Z, Ma X Q, et al. Influence of steam explosion on physical-chemical characteristic of corn stalk. China Journal of High Pressure Physics, 2014, 26(2): 227-234.

[14] Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy & Environmental Science, 2011, 4(10): 3913-3929.

[15] Ha S H, Mai N L, An G, et al. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource Technology, 2011, 102(2): 1214-1219.

[16] Li X H, Yang H J, Roy B, et al. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiological Research, 2010, 165(3): 190-198.

[17] Schnorr K W, Anderson L, Da Fonseca M L, et al. Expression constructs comprising a terebella lapidaria nucleic acid encoding cellulase, host cells, and methods of making cellulase. US 9000138 B2, 2015.

[18] 毛雨, 王丹, 黄占斌, 等. 微生物原生质体融合育种技术及其应用. 中国生物工程杂志, 2010, 30(1): 93-97. Mao Y, Wang D, Huang Z B, et al. Application of microbial protoplasts fusion technology in genetic breeding. China Biotechnology, 2010,30(1):93-97.

[19] Xu F, Jin H J, Li H M, et al. Genome shuffling of Trichoderma viride for enhanced cellulase production. Annals of Mcirobiology, 2012, 62(2), 509-515.

[20] Raghuwanshi S, Deswal D, Kar PM, et al. Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel, 2014, 124(15): 183-189.

[21] Zhang Y M, Zhang J W, Xiao P, et al. Improved cellulase production via disruption of PDF01641 in cellulolytic fungus Penicillium decumbens. Bioresoure Technology, 2012, 123, 733-737.

[22] Kaur B, Sharma M, Sonic R, et al. Proteome-based profiling of hypercellulase-producing strains developed through interspecific protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis. Applied Biochemistry and Biotechnology, 2013, 169(2): 393-407.

[23] Khan J A, Singh S K. Proudction of cellulase using chea Psubstrates by solid state fermentation. International Journal of Plant, Animal and Environmental Sciences, 2011, 1(3): 179-187.

[24] 罗永生. 固态混菌发酵纤维素酶工艺研究. 郑州:郑州大学, 2010. Luo Y S. Study on the process of solid-mixed fermentation for cellulase. Zhengzhou:Zhengzhou University, 2010.

[25] 班楠. Pencicillum decumbens 产纤维素酶发酵工艺的优化及酶稳定性的研究. 呼和浩特:内蒙古大学, 2012. Ban N. Ferment technique optimization of cellulase producted by Penicillum decumbens and study on stability of the enzyme. Huhohot: Inner Mongolia University, 2012.

[26] Delabona PD S, Farinas C S, Silva M R, et al. Use of a new Trichoderma harzianum strain isolated from the amazon rainforest with pretreated sugar cane bagasse for on-site cellulose production. Bioresource Technology, 2012, 107: 517-521.

[27] Maeda R N, Serpab V I, Rochaa V A L, et al. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 20ll, 46(5): 1196-1201.

[28] Del Pozo M V, Fernández-Arrojo L, Gil-Martínez J, et al. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnology for Biofuels, 2012, 5: 73.

[29] 唐开宇, 张全, 佟明友, 尹佩林. 一种黑曲霉菌株及其应用. CN 101899398 A, 2010.

[30] Qing Q, Wyman C E. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnologly for Biofuels, 2011, 4: 18.

[31] Zhang M, Su R, Qi W, et al. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Applied Biochemistry and Biotechnology, 2010, 160(5): 1407-1414.

[32] Gusakov A V, Salanovich T N, Antonov A I, et al. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2007, 97(5): 1028-1038.

[33] Seo D J, Fujita H, Sakoda A. Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption, 2011, 17(5): 813-822.

[34] Mackenzie K J, Francis M B. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. Journal of the American Chemical Society, 2013, 135(1): 293-300.

[35] Zheng Y, Pan Z L, Zhang R H, et al. Non-ionic surfactants and noncatalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Applied Biochemistry and Biotechnology, 2008, 146 (1): 231-248.

[36] 王娜娜, 姚秀清, 张全, 等. 金属离子及表面活性剂对纤维素酶水解预处理玉米秸秆的影响. 科学技术与工程, 2011, 11(20): 4913-4916. Wang N N, Yao X Q, Zhang Q, et al. Influence of metal ions and surfactants on the hydrolysis of pretreated corn stover by cellulase. Science Technology and Engineering, 2011, 11(20): 4913-4916.

[37] Huang R, Su R, Qi W, et al. Bioconversion of lignocellulose into bioethanol:process intensification and mechanism research. Bioenergy Research, 2011, 4(4): 225-245.

[38] Li J H, Li S Z, Fan C Y, et al. The mechanism of poly(ethylene glycol) 4000 effect on enzymatic hydrolysis of lignocellulose Colloids and Surfaces B: Biointerfaces, 2012, 89(1): 203-210.

[39] Tu M B, Saddler J N. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Applied Biochemistry and Biotchnology, 2010, 161(1-8): 274-287.

[40] Monschein M, Reisinger C, Nidetzky B. Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw. Bioresource Technology, 2014, 169: 713-722.

[41] 姚兰, 赵建, 谢益民, 等. 木质素结构以及表面活性剂对木质素吸附纤维素酶的影响. 化工学报, 2012, 63(8): 2612-2616. Yao L, Zhao J, Xie Y M, et al. Effect of lignin structure and surfactant on cellulase adsorption by lignin. Journal of Chemical and Industry and Engineering(China), 2012, 63(8): 2612-2616.

[42] 罗鹏, 刘忠. Tween-20协同麦草酶水解的研究. 华南农业大学学报, 2010, 31(1): 55-59. Luo P, Liu Z. Enzymatic hydrolysis of wheat straw cooperated with Tween-20. Journal of South China Agricultural University, 2010, 31(1): 55-59.

[43] Wang H, Mochidzuki K, Kobayashi S, et al. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis. Applied Biochemistry and Biotechnology, 2013, 170(3): 541-551.

[44] Brethauer S, Studer M H, Yang B, et al. The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresource Technology, 2011, 102(10): 6295-6298.

[45] 迈克尔·A.·马尔莱塔, 詹姆斯·H.·多德纳-凯特, 威廉·T.·毕森四世, 等. 增强的纤维素降解. 中国, 103814128 A, 2012.

[46] K. S.约翰斯, 徐丰, P.沃尔顿, 等. 增加多肽的纤维素分解增强活性的方法. 中国, 103608461 A, 2012.

[47] Mackenzie K J, Francis M B. Effects of NIPAm polymer additives on the enzymatic hydrolysis of avicel and pretreated miscanthus. Biotechnology and Bioengineering, 2014, 111(9): 1792-1800.

[48] Wang G, Zhang X W, Wang L, et al. The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Advances in Biological Chemistry, 2012, 2(4): 390-395.

[49] Woodward J. Immobilized cellulases for cellulose utilization Journal of Biotechnology, 1989, 11(4): 299-312.

[50] 曹黎明, 陈欢林. 酶的定向固定化方法及其对酶生物活性的影响. 中国生物工程杂志, 2003, 23(1): 22-29. Cao L M, Chen H L. The methods of oriented immobilized enzymes and the activities of enzymes affected by oriented immobilization. China Biotechnology, 2003, 23(1): 22-29.

[51] Atia K S. Co-immobilization of cyclohexanone monooxygenase and glucose-6-phosphate dehydrogesade onto polyethylenimineporous agarose polymeric composite using γ-irradiation to use in biotechnological processes. Radiation Physics and Chemistry, 2005, 73(2): 91-99.

[52] Kato N, Samejima S, Takahashi F. Isomaltose synthesis in the reversed hydrolysis catalyzed by amyloglucosidase immobilized in the thermosensitive gel. Materials Science and Engineering: C, 2001, 17(1-2): 155-160.

[53] 代云容, 牛军峰, 殷立峰, 等. 静电纺丝纳米纤维膜固定化酶及其应用. 化学进展, 2010, 22(9): 1808-1818. Dai Y R, Niu J F, Yin L F, et al. Electrospun nanofiber membranes as supports for enzyme immobilization and its application. Progress in Chemistry, 2010, 22(9): 1808-1818.

[54] 辛宝娟, 邢国文. 氧化铁磁性纳米粒子固定化酶. 化学进展, 2010, 22(4): 593. Xin B J, Xing G W. Magnetic iron oxide nanoparticle immobilized enzymes. Progress in Chemistry, 2010, 22(4): 593.

[55] Hung T C, Fu C C, Su C H, et al. Immobilization of cellulose onto electrospun polyacrylonitrile(PAN) nanofibrous membranes and its application to the reducing sugar production from microalgae. Enzyme and Microbial Technology, 2011, 49(1), 30-37.

[56] Chang R H, Jang J, Wu K C. Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chemistry, 2011, 13(10): 2844-2850.

[57] Zang L M, Qin J H, Wu X L, et al. Preparation of magnetic chitosan nanoparticles as support for cellulose immobilization. Industrial &Engineering Chemistry Research, 2014, 53(9): 3448-3454.

[58] Jordan J, Kumar C S, Theegala C. Preparation and characterization of cellulase-bound magnetite nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2011, 68(2): 139-146.

[59] Khoshnevisan K, Bordbar A K, Zare D, et al. Immobilization of cellulose enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chemical Engineering Journal, 2011, 171(2): 669-673.

[60] Zhang Y, Xu J L, Yuan Z H, et al. Artificial neural network-genetic algorithm based optimization for the immobilization of cellulase on the smart polymer Eudragit L-100. Bioresource Technology, 2010, 101(9): 3153-3158.

[61] Mackenzie K J, Francis M B. Recyclable thermoresponsive polymer-cellulase bioconjugates for biomass depolymerization. Journal of The American Chemistry Society, 2013, 135(1): 293-300.

[62] 王献玲, 方桂珍. 不同活化方法对微晶纤维素结构和氧化反应性能的影响. 林产化学与工业, 2007, 27(3): 67-71. Wang X L, Fang G Z. Influence on structure and oxidation reactivity of microcrystalline cellulose by different activation methods. Chemistry and Industry of Forest Products, 2007, 27(3): 67-71.

[63] Mawson R, Gamage M, Terefe N S, et al. Ultrasound in enzyme activation and inactivation. New York: Springer, 2011. 369-340.

[64] Sulaiman A Z, Ajit A,Chisti Y. Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose. Biotechnology Progress, 2013, 29(6): 1448-1457.

[65] 潘晓辉. 微波预处理玉米秸秆的工艺研究. 哈尔滨:哈尔滨工业大学, 2007. Pan X H. Study on microwave pretreatment of corn stover. Harbin:Harbin Institute of Technology, 2007.

[66] Gong G F, Liu D Y, Huang Y D. Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosystems Engineering, 2010, 107(2): 67-73.

[67] Luengnaruemitchai A, Boonsombuti A, Wongkasemjit S. Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology. Cellulose, 2013, 20(4): 1957-1966.

[68] Qi B, Luo J, Chen G, et al. Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresource Technology, 2012, 104: 466-472.

[69] Chen G Q, Song W J, Qi B K,et al. Recycling cellulase from enzymatic hydrolyzate of acid treated wheat straw by electroultrafiltration. Bioresource Technology, 2013, 144:186-193.

[70] Tu M B, Zhang X, Paice M, et al. The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresource Technology, 2009, 100(24): 6407-6415.

[71] 吴泽, 张秋翔, 李双喜, 等. 纤维素连续酶解装置的混合输送器性能研究. 纤维素科学与技术, 2013, 21(2): 30-38. Wu Z, Zhang Q X, Li S X, et al. The performance research of mixed conveyor in cellulose continuous enzymolysis reactor. Journal of Cellulose Science and Technology, 2013, 21(2): 30-38.

[72] Zhang M J, Su R X, Li Q, et al. Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. BioEnergy Research, 2011, 4(2): 134.

[73] Jørgensen H, Vibe-Pedersen J, Larsen J, et al. Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 2007, 96(5): 862-870.

[74] Kirsch C, Zetzl C, Smirnva I. Development of an integrated thermal and enzymatic hydrolysis for lignocellulosic biomass in fixed-bed reactors. Holzforschung, 2011, 65(4): 483-489.

[1] MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms[J]. China Biotechnology, 2017, 37(6): 124-133.
[2] XIONG Yuan-yuan, LU Chuan-dong, TAO Ye, ZHAO Jin-fang. Fermentative Production of L-lactic Acid from Wastepaper by Recombinant Escherichia coli WL204[J]. China Biotechnology, 2015, 35(5): 49-54.
[3] ZHANG Dong-xu. Recent Advances in Biological Detoxification of Inhibitors in Lignocellulose Hydrolysate[J]. China Biotechnology, 2013, 33(5): 120-124.
[4] YE Jing, XU Jing-liang, XIAO Bo, YUAN Zhen-hong, XU Hui-juan, YANG Liu, LI Xie-kun. Research Progress on Pentose Metabolic Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2012, 32(11): 132-136.
[5] YE Jing, XU Jing-liang, XIAO Bo, YUAN Zhen-hong, XU Hui-juan, YANG Liu, LI Xie-kun. Research Progress on Pentose Metabolic Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2012, 32(11): 132-136.
[6] WAN Chu-yun, LIU Rui, HUANG Feng-hong, HUANG Qian. Study on Screening of Complex Microbial Community in Straw Degrading of Rapeseed[J]. China Biotechnology, 2011, 31(06): 70-74.
[7] YANG De-Feng, BO Li-Xia, GUAN Ni, MI Hui-Zhi, ZUO Wen-Piao, HUANG Ri-Bei. Studies on Screening, Identification and Fermentation Characters of a Yeast Strain Fermentation Ethanol from Xylose-Glucose[J]. China Biotechnology, 2009, 29(10): 69-73.
[8] . Study on the saccharification processes of lignocellulose brought about by ultrasonic wave[J]. China Biotechnology, 2007, 27(9): 81-84.