Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (8): 116-125    DOI: 10.13523/j.cb.20150817
    
Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity
WEN Sai, LIU Huai-ran, XU Dan-dan
School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Food Flavor Chemistry, Beijing 100048, China
Download: HTML   PDF(869KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lysozyme, as a powerful natural antibiotic peptide, can be used as an effective alternative to antibiotics and chemical preservatives. With advances of lysozyme, the increasingly severe problems of bacterial resistance, antibiotic residues in dairy products and overdose of chemical preservative which cause food safety issues may be addressed. The research status of lysozyme in terms of muramidase and non-muramidase activity were summarized, and an overview of the research progress in the development of new antimicrobial activity of lysozyme by protein engineering were provided.



Key wordsLysozyme      N-acetylmuramidase      Non-muramidase activity      Protein engineering     
Received: 27 April 2015      Published: 25 August 2015
ZTFLH:  Q814  
Cite this article:

WEN Sai, LIU Huai-ran, XU Dan-dan . Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity. China Biotechnology, 2015, 35(8): 116-125.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150817     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I8/116


[1] Jolles P, Jolles J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem, 1984, 63 (2): 165-189.

[2] Davis K M, Weiser J N. Modifications to the peptidoglycan backbone help bacteria to establish infection. Infection and Immunity, 2010, 79 (2): 562-570.

[3] Rubio C A. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens, 2014, 3 (1): 73-92.

[4] Hasselberger F X. Uses of Enzymes and Immobilized Enzymes. Chicago:Nelson-Hall, 1978.

[5] 王佃亮. 重组人溶菌酶研究进展. 中国生物工程杂志, 2003, 23 (9): 59-62. Wang D L.Research progress in recombinant human lysozyme.China Biotechnology,2013,23(9):59-62.

[6] During K. Can lysozymes mediate antibacterial resistance in plants? Plant Mol Biol, 1993, 23 (1): 209-214.

[7] Jollès P. Lysozymes: Model Enzymes in Biochemistry and Biology. Birkhäuser Verlag, 1996.

[8] Baase W A, Liu L, Tronrud D E, et al. Lessons from the lysozyme of phage T4. Protein Science, 2010, 19 (4): 631-641.

[9] Shockman G D, Holtje J-V. Buereriul Cell Wall. Elsevier, 1994.

[10] Hughey V L, Johnson E A. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Applied and Environmental Microbiology, 1987, 53 (9): 2165-2170.

[11] Dias R, Vilas-Boas E, Campos F M, et al. Activity of lysozyme on Lactobacillus hilgardii strains isolated from Port wine. Food Microbiology, 2015, 49: 6-11.

[12] Guzzo F, Cappello M S, Azzolini M, et al. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria. International Journal of Food Microbiology, 2011, 148 (3): 184-190.

[13] Harding R L, Henshaw J, Tilling J, et al. Thioester analogues of peptidoglycan fragment MurNAc-L-Ala- -D-Glu as substrates for peptidoglycan hydrolase MurNAc-L-Ala amidase. Journal of the Chemical Society, Perkin Transactions 1, 2002, (14): 1714-1722.

[14] Cheng X, Zhang X, Pflugrath J W, et al. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91 (9): 4034-4038.

[15] Loessner M J, Maier S K, Daubek-Puza H, et al. Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. Journal of Bacteriology, 1997, 179 (9): 2845-2851.

[16] Brönneke V, Fiedler F. Production of bacteriolytic enzymes by Streptomyces globisporus regulated by exogenous bacterial cell walls. Applied and Environmental Microbiology, 1994, 60 (3): 785-791.

[17] Beukes M, Bierbaum G, Sahl H G, et al. Purification and partial characterization of a murein hydrolase, Millericin B, produced by Streptococcus milleri NMSCC 061. Applied and Environmental Microbiology, 2000, 66 (1): 23-28.

[18] Phillips D C. The three dimensional structure of an enzyme molecule. Scientific American, 1966, 215 (5): 78-90.

[19] Zlesnierowski G, Kijowski J, Lysozyme, in: Huopalahti R, López-Fandio R. Bioactive Egg Compounds. Heidelberg:Springer, 2007.33-40.

[20] Barrett J F, Schramm V L, Shockman G D. Hydrolysis of soluble, linear, un-cross-linked peptidoglycans by endogenous bacterial N-acetylmuramoylhydrolases. Journal of Bacteriology, 1984, 159 (2): 520-526.

[21] Barrett J F, Dolinger D L, Schramm V L, et al. The mechanism of soluble peptidoglycan hydrolysis by an autolytic muramidase. A processive exodisaccharidase. Journal of Biological Chemistry, 1984, 259 (19): 11818-11827.

[22] Kariyama R, Shockman G D. Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790. Journal of Bacteriology, 1992, 174 (10): 3236-3241.

[23] Ghuysen J M. Serine beta-lactamases and penicillin-binding proteins. Annual Review of Microbiology, 1991, 45 (1): 37-67.

[24] Joris B, Englebert S, Chu C P, et al. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiology Letters, 1992, 91 (3): 257-264.

[25] Shockman G D. The autolytic ('suicidase') system of Enterococcus hirae: from lysine depletion autolysis to biochemical and molecular studies of the two muramidases of Enterococcus hirae ATCC 9790. FEMS Microbiology Letters, 1992,100 (1-3): 261-267.

[26] Chu C P, Kariyama R, Daneo-Moore L, et al. Cloning and sequence analysis of the muramidase-2 gene from Enterococcus hirae. Journal of Bacteriology, 1992, 174 (5): 1619-1625.

[27] García P, García J, García E, et al. Modular organization of the lytic enzymes of Streptococcus pneumoniae and its bacteriophages. Gene, 1990, 86 (1): 81-88.

[28] Diaz E, López R, Garcia J L. Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. Journal of Biological Chemistry, 1991, 266 (9): 5464-5471.

[29] Brumfitt W, Wardlaw A C, Park J T. Development of lysozyme-resistance in Micrococcus lysodiekticus and its association with an increased o-acetyl content of the cell wall. Nature, 1958, 181 (4626): 1783-1784.

[30] Felch J W, Inagami T, Hash J H. The N, O-diacetylmuramidase of Chalaropsis species. V. The complete amino acid sequence. Journal of Biological Chemistry, 1975, 250 (10): 3713-3720.

[31] Shih J W, Hash J H. The N,O-diacetylmuramidase of Chalaropsis Species: III. amino acid composition and partial structural formula. Journal of Biological Chemistry, 1971, 246 (4): 994-1006.

[32] Lichenstein H S, Hastings A E, Langley K E, et al. Cloning and nucleotide sequence of the N-acetylmuramidase M1-encoding gene from Streptomyces globisporus. Gene, 1990, 88 (1): 81-86.

[33] Seo H J, Kitaoka M, Ohmiya K, et al. Substrate specificity of the N,6-O-diacetylmuramidase from Streptomyces globisporus. Journal of Bioscience and Bioengineering, 2003, 95 (3): 313-316.

[34] Seo H J, Shimonishi T, Ohmiya K, et al. Characterization of N-acetylmuramidase M-1 of Streptomyces globisporus produced by Escherichia coli BL21(DE3)pLysS. Journal of Bioscience and Bioengineering, 2001, 92 (5): 472-474.

[35] 曹涛, 刘同军, 王艳君. 微生物溶菌酶的研究及应用. 中国调味品, 2011, 36 (3): 23-26,32. Cao T, Liu T J, Wang Y J. Research and application of microbial lysozyme. China Condiment, 2011, 36 (3): 23-26,32.

[36] 刘同军, 徐文琳, 张玉臻. 变溶菌素Mutanolysin研究历史和发展前景. 微生物学报, Liu T J, Xu W L, Zhang Y Z. History and prospects of the research on mutanolysin. Acta Microbiologica Sinica, 2000, 40 (2): 224-227.

[37] Glynn L E. Lysozymes: Model Enzymes in Biochemistry and Biology. Basel:John Wiley & Sons, 1997.

[38] Pellegrini A, Thomas U, von Fellenberg R, et al. Bactericidal activities of lysozyme and aprotinin against gram-negative and gram-positive bacteria related to their basic character. J Appl Bacteriol, 1992, 72 (3): 180-187.

[39] Ibrahim H R, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett, 2001, 506 (1): 27-32.

[40] During K, Porsch P, Mahn A, et al. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett, 1999, 449 (2-3): 93-100.

[41] Ibrahim H R, Higashiguchi S, Juneja L. A structural phase of heat-denatured lysozyme with novel antimicrobial action. J Agric Food Chem, 1996, (44): 1416-1423.

[42] Pellegrini A, Thomas U, Bramaz N, et al. Identification and isolation of a bactericidal domain in chicken egg white lysozyme. J Appl Microbiol, 1997, 82 (3): 372-378.

[43] Thammasirirak S, Pukcothanung Y, Preecharrama S. Antimicrobial peptides drived from goose egg white lysozyme. Comp Biochem Phy, 2010, 151: 84-91.

[44] Ibrahim H R, Higashiguchi S, Juneja L R, et al. A structural phase of heat-denatured lysozyme with novel antimicrobial action. Journal of Agricultural and Food Chemistry, 1996, 44: 1416-1423.

[45] Ibrahim H R, Higashiguchi S, Koketsu M, et al. Partially unfolded lysozyme at neutral pH agglutinates and kills gram-negative and Gram-positive bacteria through membrane damage mechanism. Journal of Agricultural and Food Chemistry, 1996, 44: 3799-3806.

[46] Hayashi K. The position of the active tryptophan residue in lysozyme. J Biochem, 1965, 58: 227-235.

[47] Kumagai I. Redesign of the substrate-binding site of hen egg white lysozyme based on the molecular evolution of C-type Iysozymes. J BioI Chem, 1992, 267: 4608-4612.

[48] Diez-Martinez R, de Paz H, Bustamante N, et al. Improving the lethal effect of Cpl-7, a Pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrobial Agents and Chemotherapy, 2013, 57 (11): 5355-5365.

[49] Hermoso J, Monterroso B, Albert A, et al. Structural basis for selective recognition of Pneumococcal cell wall by modular endolysin from phage Cp-1. Structure, 2003, 11 (10): 1239-1249.

[50] Schmelcher M, Tchang V S, Loessner M J. Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microbial Biotechnology, 2011, 4 (5): 651-662.

[51] Li C P, Salvador A S, Ibrahim H R, et al. Phosphorylation of egg white proteins by dry-heating in the presence of phosphate. Journal of Agricultural and Food Chemistry, 2003, 51: 6808-6815.

[52] Nakamura N K, Furukawa N, Matsuoka M, et al. Enzyme activity of lysozyme–dextran complex prepared by high-pressure treatment. Food Science and Technology International, 1997, 3: 235-238.

[53] Seo S, Karboune S, Yaylayan V, et al. Glycation of lysozyme with galactose, galactooligosaccharides and potato galactan through the Maillard reaction and optimization of the production of prebiotic glycoproteins. Process Biochemistry, 2012, 47 (2): 297-304.

[54] Seo S, Karboune S, L'Hocine L, et al. Characterization of glycated lysozyme with galactose, galactooligosaccharides and galactan: Effect of glycation on structural and functional properties of conjugates. LWT - Food Science and Technology, 2013, 53 (1): 44-53.

[55] Enomoto H, Nagae S, Hayashi Y, et al. Improvement of functional properties of egg white protein through glycation and phosphorylation by dry-heating. Asian-Australasian Journal of Animal Sciences, 2009, 22 (4): 591-597.

[56] Hideyuki A. Bactericidal action of lysozymes attached with various sizes of hydrophobic peptides to the C-terminal using genetic modification. FEBS Letters, 1997, 415: 114-118.

[57] Ibrahim H R. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a ydrophobic pentapeptide into its C terminus. The Journal of Biological Chemistry, 1993, 269: 5059-5063.

[58] Tucker A D, Parker M W, Tsernoglou D, et al. Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. Journal of Molecular Biology, 1990, 212 (4): 561-562.

[59] Burn P, Dalle Carbonare B H, Lipid-protein interactions in biological membranes, in: Bittar E E, Neville B, ed. Principles of Medical Biology, Elsevier, 1997.39-66.

[60] Ibrahim H R, Kobayashi K, Kato A. Length of hydrocarbon chain and antimicrobial action to Gram-negative bacteria of fatty acylated lysozyme. Journal of Agricultural and Food Chemistry, 1993, 41 (7): 1164-1168

[61] Liu S T, Sugimoto T, Azakami H, et al. Lipophilization of lysozyme by short and middle chain fatty acids. Journal of Agricultural and Food Chemistry, 2000, 48: 265-269.

[62] Liu S, Azakami H, Kato A. Improvement in the yield of lipophilized lysozyme by the combination with Maillard-type glycosylation. Food / Nahrung, 2000, 44 (6): 407-410.

[63] Ibrahim H R, Yamada M, Matsushita K, et al. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. Journal of Biological Chemistry, 1994, 269 (7): 5059-5063.

[64] Ibrahim H R, Hatta H, Fujiki M, et al. Enhanced antimicrobial action of lysozyme against gram-negative and gram-positive bacteria due to modification with perillaldehyde. Journal of Agricultural and Food Chemistry, 1994, 42: 1813-1817.

[65] de Oliveira M, Brugnera D, do Nascimento J, et al. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces. Eur Food Res Technol, 2012, 234 (5): 821-832.

[66] Valenta C, Bernkop-Schnürch A, Schwartz M. Modification of lysozyme with cinnamaldehyde: A strategy for constructing novel preservatives for dermatics. International Journal of Pharmaceutics, 1997, 148 (2): 131-137.

[67] Ibrahim H R, Aoki T, Pellegrini A. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules. Current Pharmaceutical Design, 2002, 8: 671-693.

[68] Nakatsuji T, Gallo R L. Antimicrobial Peptides: Old Molecules with New Ideas. Journal of Investigative Dermatology, 2011, 132 (3): 887-895.

[69] May K D, Wells J E, Maxwell C V, et al. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs. Journal of Animal Science, 2012, 90 (4): 1118-1125.

[70] Oliver W T, Wells J E. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. Journal of Animal Science, 2013, 91: 3129-3136.

[71] Abdou A M, Higashiguchi S, Aboueleinin A M, et al. Antimicrobial peptides derived from hen egg lysozyme with inhibitory effect against Bacillus species. Food Control, 2007, 18 (2): 173-178.

[72] You S-J, Udenigwe C C, Aluko R E, et al. Multifunctional peptides from egg white lysozyme. Food Research International, 2010, 43 (3): 848-855.

[73] Memarpoor-Yazdi M, Asoodeh A, Chamani J. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. Journal of Functional Foods, 2012, 4 (1): 278-286.

[74] Ibrahim H R, Inazaki D, Abdou A, et al. Processing of lysozyme at distinct loops by pepsin: A novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochimica et Biophysica Acta (BBA) - General Subjects, 2005, 1726 (1): 102-114.

[1] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[2] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[3] Peng HUANG,Wang-chun DU,Wei-jun SHI,Yu-liang RAO,Qing-wen SUN,Ning ZHANG. The Functional Studies of Human Lysozyme-like Protein 6 and Characterization of Its Physiological Properties[J]. China Biotechnology, 2018, 38(3): 1-8.
[4] Peng HUANG,Li-ping YAN,Ning ZHANG,Jin-lei SHI. Constitutive Expression of Human Goose-type Lysozyme 2 in Pichia pastoris Using the GAP Promoter[J]. China Biotechnology, 2018, 38(10): 55-63.
[5] HUANG Peng, LI Wen-shu, XIE Jun, BAO Jian-ying, CAO Xiao-e, YU Long, XU Yi-xin . Expression of Human Lysozyme-like Protein 6 in Pichia pastoris and Analysis of Enzymatic Activity of the Protein[J]. China Biotechnology, 2015, 35(8): 30-37.
[6] WEI Tian-tian, YU Ying, JIN Xiao-feng, TAO Jian-jun, YU Long. Recombinant Expression of Human LYC5 Lysozyme in Pichia pastoris[J]. China Biotechnology, 2014, 34(4): 1-8.
[7] ZHU Li, WANG Xue-bin, SHI Hao, YU Hui-qing, LU Ping, XU Xu-jun, CHENG Guo-xiang. Culture and Characterization of a Primary Mammary Epithelial Cell line of Lysozyme Transgenic Goat[J]. China Biotechnology, 2014, 34(10): 28-34.
[8] LI Xin-xin, TAO Jian-jun, YU Long. Recombinant Human Lysozyme LYZL4:Expression in Pichia pastoris and Its Antibacterial Activity[J]. China Biotechnology, 2014, 34(1): 79-85.
[9] ZHANG Peng, JIANG Ming-feng, WANG Yong. Advance in Studies of Animal-borne Lysozyme[J]. China Biotechnology, 2012, 32(08): 87-93.
[10] WU Jia-xin, YU Zhi-qiang, WANG Hua-li, GE Xin-mei, QI Peng, ZHENG Ying-hua, LIU De-hu, SONG Min, ZHANG Guo-dong, CAO Qin. The Pilot Study on T4 Lysozyme Fermentation by Pichia pastoris[J]. China Biotechnology, 2010, 30(12): 49-52.
[11] . Protein engineering of microbial lipases[J]. China Biotechnology, 2009, 29(09): 0-0.
[12] . Progress in Construction Methods of Diverse Mutated Gene Libraries for Protein[J]. China Biotechnology, 2006, 26(10): 50-56.