Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (5): 96-102    DOI: 10.13523/j.cb.20150514
    
The Process of Methods on Validating the Differential Transcription of Genes
ZUO Hai-yang1,2, CHEN Xiao-li2, CAI Yong2, HAO Hai-sheng2, QIN Tong2, ZHAO Xue-ming2, LU Yong-qiang3, WANG Dong2
1. Animal Science and Technology College, Jilin Agricultural University, Changchun 130118, China;
2. The Key Laboratory for Farm Animal Genetic and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China;
3. Animal Husbandry Station of Beijing, Beijing 100107, China
Download: HTML   PDF(469KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The differential expression of genes is closely related to biological characters and function of tissue and cell. With the extensive study on the differentiation of tissue and organs and the growth and development of cells and individuals, the validation of differentially expressed genes are getting more and more important. Thus, a series of validating techniques of differentially expressed analysis were established on the basis of nucleic acid hybridization and PCR, such as Northern blot and fluorescence quantitative PCR. The differentially expressed genes were validated of different treatment, different organs and different development period using these methods, which laid a solid foundation for the gene functional analysis. With the fast development of the detecting methods, the validation methods of differential expression of genes has developed from qualitative to quantitative, from tedious and complicated to simple and rapid, from requiring a large number of initial RNA to only a small amount of RNA, even the fluoresce quantitative PCR method for single cell has been established, and the method is to be more efficient, accurate and low cost. However, The validation for the samples difficult sampling like germ cell and less amount of RNA containing like sperm is still a great challenge for the current method. The validation methods of differential expression of genes from the perspective of the development process was reviewed. Reference to the detedtion of samples dificult sampling and less amount RNA containing was provided.



Key wordsDifferential expression of gene      Fluorescence quantitative PCR      Nucleic acid hybridization      Nucleic acid probe     
Received: 02 February 2015      Published: 25 May 2015
ZTFLH:  Q786  
Cite this article:

ZUO Hai-yang, CHEN Xiao-li, CAI Yong, HAO Hai-sheng, QIN Tong, ZHAO Xue-ming, LU Yong-qiang, WANG Dong. The Process of Methods on Validating the Differential Transcription of Genes. China Biotechnology, 2015, 35(5): 96-102.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150514     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I5/96


[1] 徐晋麟, 陈淳, 徐沁. 基因工程原理.第2版. 北京:科学出版社, 2014:1-10. Xu J L, Chen C, Xu J. Genetic Engineering Principles. 2nd ed. Beijing:Science Press, 2014:1-10.

[2] Lovén J, Orlando D A, Sigova A A, et al. Revisiting global gene expression analysis. Cell, 2012, 151(3): 476-482.

[3] Diatchenko L, Lukyanov S, Lau Y F C, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods in Enzymology, 1999, 303: 349-380.

[4] Mutz K O, Heilkenbrinker A, Lnne M, et al. Transcriptome analysis using next-generation sequencing. Current Opinion in Biotechnology, 2013, 24(1): 22-30.

[5] Van Verk M C, Hickman R, Pieterse C M J, et al. RNA-Seq: revelation of the messengers. Trends in Plant Science, 2013, 18(4): 175-179.

[6] Mukai Y. In situ hybridization//Fukui K and Nakayama S.Plant Chromosomes: Laboratory Methods. Boca Raton, Florida:CRC Press, 1996: 155-170.

[7] Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, 1986, 51, 263-273.

[8] Garibyan L, Avashia N. Research techniques made simple: polymerase chain reaction (PCR). The Journal of Investigative Dermatology, 2013, 133(3): 6.

[9] Alwine J C, Kemp D J, Stark G R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. PNAS, 1977, 74(12): 5350-5354.

[10] 张书霞, 陈万芳. Bcl-2在鸡马立克氏病肿瘤中的表达. 畜牧兽医学报, 2001, 32(1): 58-63. Zhang S X, Chen W F. Expression of bcl-2 in Marek' s disease tumor. Chinese Journal of Animal and Veterinary Sciences, 2001,32(1): 58-63.

[11] 杨春花, 谷志远, 郝好杰, 等. Northern印迹杂交检测胃癌组织中uPA和uPAR mRNA表达及其意义. 军医进修学院学报, 2000, 21(1): 45-47. Yang C H, Gu Z Y, Hao H J, et al. Expression and signif icance of urokinase-type plasminogen activator and its receptor in gastric cancer tissue by northern blot hybridization. Academic Journal of Chinese PLA Medical School, 2000, 21(1): 45-47.

[12] Streit S, Michalski C W, Erkan M, et al. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nature Protocols, 2008, 4(1): 37-43.

[13] Berk A J, Sharp P A. Spliced early mRNAs of simian virus 40. PNAS, 1978, 75(3): 1274-1278.

[14] Weaver R F, Weissmann C. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5' termini of 15 S β-globin mRNA precursor and mature 10 S β-globin mRNA have identical map coordinates. Nucleic Acids Research, 1979, 7(5): 1175-1194.

[15] Gilman M. Ribonuclease protection assay. Current Protocols in Molecular Biology, 2001,24:11:4.7.1-4.7.8.

[16] Ma Y J, Dissen G A, Rage F, et al. RNase protection assay. Methods, 1996, 10(3): 273-278.

[17] Campbell D J, Habener J F. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. Journal of Clinical Investigation, 1986, 78(1): 31.

[18] Sambrook J, Russell D W. Molecular Cloning: A Laboratory Manual. 3rd ed. NY: Cold Spring Harbor Laboratory Press, 2001.

[19] 孙芸, 吴剑卿, 余多慰. 哮喘小鼠骨髓DC细胞因子mRNA的分析. 南京师大学报(自然科学版), 2005, 28(2): 96-100. Sun Y, Wu J Q, Yu D W. Analysis of cytokines mRNA in DCs derived from Asthmatic mice's bone marrow. Journal of Nanjing Normal University(Natural Science Edition), 2005, 28(2): 96-100.

[20] 刘庆辉, 刘德培, 梁植权. 用RNase保护试验检测珠蛋白基因表达. 生物化学与生物物理进展, 1994, 21(4): 359-362. Liu Q H, Liu D P, Ling Z Q. Determination of globin gene expression by RNase protection assay. Progress in Biochemistry and Biophysics, 1994, 21(4): 359-362.

[21] Raemaekers L. A commentary on the practical applications of competitive PCR. Genome Res, 1995, 5(1): 91-94.

[22] 龙火生. 瘦肉型与脂肪型猪ob基因表达差异的研究. 杨凌:西北农林科技大学, 2003. Long H S. Differences of ob Gene Expression between Lean and Obese Swine. Yangling:Northwest Science Technology of Agriculture and Forestry, 2003.

[23] Kozera B, Rapacz M. Reference genes in real-time PCR. Journal of Applied Genetics, 2013, 54(4): 391-406.

[24] Reidy M C, Timm E A, Stewart C C. Quantitative RT-PCR for measuring gene expression. Biotechniques, 1995, 18(1): 70-76.

[25] 秦宁. 猪骨骼数字基因表达谱分析与差异表达基因验证. 长春:吉林农业大学, 2012. Qin N. Analysis of Digital Gene Expression Profiles and Identification of Some Differentially Expression Genes in the Skeletal Muscle of Pigs. Changchun:Jilin Agriculture University, 2012.

[26] 王栋, 张沅, 孙东晓, 等. 鸡杂种与纯种间细胞质异柠檬酸脱氢酶基因的差异表达及其与杂种优势的关系. 遗传, 2004, 26(3): 303-308. Wang D, Zhang Y, Sun D X, et al. Differential expression of CIDH gene between purebreds and hybrids in chicken and relationship with heterosis. Hereditas, 2004, 26(3): 303-308.

[27] Dundas J, Ling M. Reference genes for measuring mRNA expression. Theory in Biosciences, 2012, 131(4): 215-223.

[28] Jain K, Mehendiratta M, Jindal D G, et al. Polymerase chain reaction: a powerful diagnostic and research tool. Dental Journal of Advance Studies, 2013,1(11):77-84.

[29] Jensen E C. Real-time reverse transcription polymerase chain reaction to measure mRNA: use, limitations, and presentation of results. The Anatomical Record, 2012, 295(1): 1-3.

[30] Higuchi R, Dollinger G, Walsh P S, et al. Simultaneous amplification and detection of specific DNA sequences. Bio/technology, 1992, 10(4): 413-417.

[31] VanGuilder H D, Vrana K E, Freeman W M. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques, 2008, 44(5): 619.

[32] Lie Y S, Petropoulos C J. Advances in quantitative PCR technology: 5' nuclease assays. Current Opinion in Biotechnology, 1998, 9(1): 43-48.

[33] Ong Y L, Irvine A. Quantitative real-time PCR: a critique of method and practical considerations. Hematology (Amsterdam, Netherlands), 2002, 7(1): 59.

[34] Morrison T B, Weis J J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques, 1998, 24(6): 954-962.

[35] 张桢, 王青青, 张根花, 等. Musashi 1在结肠癌中的表达及其与微血管密度及预后的关系. 中国免疫学杂志, 2015, 31(1): 97-102. Zhang Z, Wang Q Q, Zhang G H, et al. Expression of Musashi 1 correlates with microvessel density and prognosis in colon cancer. Chinese Journal of Immunology, 2015, 31(1): 97-102.

[36] 胡义洁, 吴明明, 朱艳菲, 等. SYBR GreenⅠ荧光定量PCR法检测转双基因猪pGH基因与IGF-1基因的表达. 中国畜牧杂志, 2014, 50(13): 16-21. Hu Y J, Wu M M, Zhu Y F,et al. The PGH gene and IGF-1 gene expression detected by SYBR green I real-time quantitative PCR in double transgenic pigs. Chinese Journal of Animal Science, 2014, 50(13): 16-21.

[37] Ririe K M, Rasmussen R P, Wittwer C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 1997, 245(2): 154-160.

[38] Heid C A, Stevens J, Livak K J, et al. Real time quantitative PCR. Genome Research, 1996, 6(10): 986-994.

[39] Reynisson E, Josefsen M H, Krause M, et al. Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR. Journal of Microbiological Methods, 2006, 66(2): 206-216.

[40] 栗文凯, 张智勇, 胡建和, 等. 实时荧光定量PCR应用技术综述. 中国畜禽种业, 2008, 4(19): 71-72. Li W K, Zhang Z Y, Hu J H, et al. Review of real-time fluoresce quantitative PCR technology. Chinese Livestock and Poultry Breeding, 2008, 4(19): 71-72.

[41] 赵焕英, 包金风. 实时荧光定量PCR技术的原理及其应用研究进展. 中国组织化学与细胞化学杂志, 2007, 16(4): 492-497. Zhan H Y, Bao J F. The principle of real-time fluorescent quantitative PCR technology and application. Chinese Journal of Histochemistry and Cytochemistry, 2007, 16(4): 492-497.

[42] 吴瑞珊, 苏运钦, 余广超, 等. Taqman探针实时荧光定量PCR检测肝脏疾病患者血清中miR-122的表达水平及其临床意义. 中国病理生理杂志, 2013, 29(2): 348-353. Wu R S, Su Y Q, Yu G C, et al. Detection of miR-122 expression in serum by Taqman probe real-time fluorescence quantitative PCR and its clinical significance. Chinese Journal of Pathophysiology, 2013, 29(2): 348-353.

[43] 侯彦强, 娄加陶,彭亮,等. 结直肠癌组织中ECM1基因水平的测定及临床意义. 世界华人消化杂志, 2007, 15(17): 1960-1964. Hou Y Q, Lou J T, Peng L, et al. Detection and clinical significance of ECM1 gene expression in colorectal cancer tissue. World Chinese Journal of Digestology, 2007, 15(17): 1960-1964.

[44] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308.

[45] Broude N E. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends in Biotechnology, 2002, 20(6): 249-256.

[46] 李军, 王柯敏, 谭蔚泓, 等. 分子信标荧光探针用于抑癌基因ING1表达产物的定量测定. 高等学校化学学报, 2004, 25(3): 421-424. Li J, Wang K M, Tan W H, et al. Quantitative detection of the expression product of tumor suppressor gene ING1 by molecular beacon fluorescence probe. Chemical Research In Chinese Universities, 2004, 25(3): 421-424.

[47] Wittwer C T, Ririe K M, Andrew R V, et al. The LightCyclerTM: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques, 1997, 22(1): 176-181.

[48] Wittwer C T, Herrmann M G, Moss A A, Rasmussen RP. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques, 1997, 22(1): 130-139.

[49] Wang C, Gao D, Vaglenov A, et al. One-step real-time duplex reverse transcription PCRs simultaneously quantify analyte and housekeeping gene mRNAs. Biotechniques, 2004, 36(3): 508-519.

[50] 刘延菊, 李东辉, 曹明耀. c-erbB-2基因表达与乳腺癌关系的研究. 现代预防医学, 2007, 33(12): 2302-2303. Liu Y J, Li D H, Cao M Y. Expression of c-erbB-2 in breast cancer. Modern Preventive Medicine, 2007, 33(12): 2302-2303.

[51] Nazarenko I. Homogenous detection of nucleic acids using self-quenched polymerase chain reaction primers labeled with a single fluorophore (LUX Primers). Methods Mol Biol, 2006, 335: 95-114.

[52] 李桂民. 基于LUX引物的HBV实时PCR检测方法的建立. 激光生物学报, 2014, 23(3): 283-288. Li G M. Development of a real-time PCR method for HBV detection based on LUX primer. Acta Laser Biology Sinica, 2014, 23(3): 283-288.

[53] Bidarimath M, Edwards A K, Tayade C. Laser capture microdissection for gene expression analysis. Apoptosis and Cancer, 2015,1219: 115-137.

[54] Tischler J, Surani M A. Investigating transcriptional states at single-cell-resolution. Current Opinion in Biotechnology, 2013, 24(1): 69-78.

[55] Sthlberg A, Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Review of Molecular Diagnostics, 2014, 14(3): 323-331.

[56] 匡晓燕, 陈芳, 郭家林, 等. 激光捕获显微切割-单细胞PCR技术的应用研究. 第三军医大学学报, 2009, 31(5): 464-466. Kuang X Y, Chen F, Guo J L, et al. Study of laser capture microdissection-single cell PCR. Acta Academiae Medicinae Militaris Tertiae, 2009, 31(5): 464-466.

[1] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.
[2] ZHANG Yu, BAI Dou, ZHU Nai-shuo. Multiplex Taqman Real-time PCR for Detection of Malignant Tumor Metastasis Rate in Cancer Metastasis Model in Nude Mice[J]. China Biotechnology, 2015, 35(4): 66-73.
[3] LI Chu-Ji, ZHANG Zheng-Yang. Using REAL-TIME PCR to Determine Transgene Copy Number in Wheat[J]. China Biotechnology, 2010, 30(03): 90-94.