Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (10): 86-90    DOI: 10.13523/j.cb.20151013
    
Advance in the Research of Antimicrobial Peptides Gene Expression in Pichia pastor
FU Xiao-meng, KONG Ling-cong, PEI Zhi-hua, LIU Shu-ming, MA Hong-xia
College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
Download: HTML   PDF(972KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Pichia pastoris expression system is a kind of high efficiency expression system of exogenous protein developed in recent years, and it is promising to express exogenous gene in Pichia pastoris. Although the relatively complete mechanism of gene expression and regulation as well as the capability of performing eukaryotic post-translational modifications of Pichia pastoris expression system has been well known, some case with no expression or the low yield were still existed due to numerous factors of gene and expression system. The aim of the expression system of Pichia pastoris, the optimization of expression vectors, engineering strain and fermentation conditions were reviewed to lay the theory foundation that exogenous gene will be expressed efficiently in Pichia pastoris.



Key wordsExpression vectors      Fermentation      Pichia pastoris      Strain      Optimization     
Received: 15 June 2015      Published: 25 October 2015
ZTFLH:  Q786  
Cite this article:

FU Xiao-meng, KONG Ling-cong, PEI Zhi-hua, LIU Shu-ming, MA Hong-xia. Advance in the Research of Antimicrobial Peptides Gene Expression in Pichia pastor. China Biotechnology, 2015, 35(10): 86-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20151013     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I10/86

[1] Cherry J M, Adler C, Ball C, et al. Saccharomyces genome database provides new regulation data. Nucleic Acids Res, 2014, 42: D717-25. doi: 10.1093/nar/gkt1158.
[2] Mattanovich D, Callewaert N, Rouze P, et al. Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact, 2009, 8: 53.
[3] Ahmad M,Hirz M,Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol, 2014, 98(12): 5301-5317.
[4] Potvin G, Ahmad A, Zhang Z. Bioprocess engineering aspects of heterologous protein production in Pichia pastoris: A review. Biochemical Engineering Journal, 2012, 64: 91-105.
[5] Hartner F S,Ruth C,Langenegger D, et al. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res, 2008, 36(12): e76.
[6] 熊向华, 赵洪亮, 薛冲, 等. 毕赤酵母醇氧化酶1启动子突变体的分离与鉴定. 生物技术通讯, 2008, 19(1): 11-13. Xiong X H, Zhao H L, Xue C, et al. Isolation and identification of AOX1 promoter mutant in Pichia pastoris. Letters in Biotechnology, 2008, 19(1): 11-13.
[7] Zhang A L, Luo J X, Zhang T Y, et al. Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol Biol Rep, 2009, 36(6): 1611-1619.
[8] Wu J M, Lin J C, Chieng L L, et al. Combined used of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factor in Pichia pastoris. Enzyme and Microbial Technology, 2003, 33(4): 453-459.
[9] 李红亮, 陈勇, 陈海容, 等. 应用双启动子共表达体系提高人胰岛素原在毕赤酵母中的表达量. 中国生物制品学杂志, 2012, 25(4): 422-425. Li H L, Chen Y, Chen H R, et al. Increase of expression level of human proinsulin in Pichia pastoris by double promoter coexpression system. Chin J Biologicals April, 2012, 25(4): 422-425.
[10] Rakestraw J A, Sazinsky S L, Piatesi A, et al. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in S. cerevisiae. Biotechnol Bioeng, 2009, 103(6): 1192-1201.
[11] Lin-Cereghino G P, Stark C M, Kim D, et al. The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris. Gene, 2013, 519(2): 311-317.
[12] Maeda M, Namikawa K, Kobayashi I, et al. Targeted gene therapy toward astrocytoma using a Cre/loxP-based adenovirus system. Brain Res, 2006, 1081(1): 34-43.
[13] Pan R, Zhang J, Shen W L, et al. Sequential deletion of Pichia pastoris genes by a self-excisable cassette. FEMS Yeast Res, 2011, 11(3): 292-298.
[14] 傅静. Cre/Loxp重组系统的修饰及其在树干毕赤酵母中的应用. 无锡:江南大学, 2013. Fu J. The modification of Cre/Loxp recombination system and the application in Scheffersomyces stipitis.Wuxi:Jiangnan University,2013.
[15] Piirainen M A, de Ruijter J C, Koskela E V, et al. Glycoengineering of yeasts from the perspective of glycosylation efficiency. Nature Biotechnology, 2014, 31(6): 532-537.
[16] Hamilton S R, Davidson R C, Sethuraman N, et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science, 2006, 313(5792): 1441-1443.
[17] Nett J H, Stadheim A T, Li H, et al. A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast, 2011, 28(3): 237-252.
[18] Gao M J, Shi Z P. Process control and optimization for heterologous protein production by methylotrophic Pichia pastoris. Chinese Journal of Chemical Engineering, 2013, 21(2): 113-226.
[19] Surribas A, Geissler D, Gierse A, et al. State variables monitoring by in-situ multi-wavelength fluorescence spectroscopy in heterologous protein production by Pichia pastoris. J Biotechnol, 2006, 124(2): 412-419.
[20] 侯国力, 高敏杰, 丁健, 等. 基于乙醇在线测量的DO-Stat甘油流加策略稳定重组毕赤酵母生产猪α干扰素的性能. 食品与发酵工业, 2014, 40(1): 1-7. Hou G L, Gao M J, Ding J, et al. Stable porcine interferon-α production by Pichia pastoris with an improved DO-stat glycerol feeding strategy based on ethanol on-line measurement. Food and Fermentation Industries, 2014, 40(1): 1-7.
[21] Celik E, Calik P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Adv, 2009, 27(3): 297-306.
[22] Jungo C, Schenk J, Pasquier M M, et al. A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for production of recombinant avidin with Pichia pastoris. J Biotechnology, 2007, 131(1): 57-66.
[23] Celik E, Calik P, Oliver S G. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 2009, 26(9): 473-484.
[24] 汪慧会, 金虎, 高敏杰, 等. 甲醇/山梨醇共混流加诱导改变毕赤酵母生产猪α干扰素过程的代谢产能途径强化发酵性能. 生物工程学报, 2012, 28(2): 164-177. Wang H H, Jin H, Gao M J, et al. Enhanced porcine interferon-α production by Pichia pastoris by methanol/sorbitol co-feeding and energy metabolism shift. Chinese Journal of Biotechnology, 2012, 28(2): 164-177.
[25] N äätsaari L, Mistlberger B, Ruth C, et al. Deletion of the Pichia pastoris KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. PLoS One, 2012, 7(6):e39720.
[26] Wu M, Shen Q, Yang Y, et al. Disruption of YPS1 and PEP4 genes reduces proteolytic degradation of secreted HSA/PTH in Pichia pastoris GS115. J Ind Microbiol Biotechno, 2013, 40(6):589-599.
[27] Damasceno L M, Huang C J, Batt C A. Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol, 2012, 93(1): 31-39.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[3] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[4] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[5] YANG Li,SHI Xiao-yu,LI Wen-lei,LI Jian,XU Han-mei. Optimization of Electroporation Conditions in Construction of Phage Display Antibody Library[J]. China Biotechnology, 2020, 40(4): 42-48.
[6] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[7] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[8] JING Hui-yuan,DUAN Er-zhen,DONG Wang. In Vitro Transcribed Self-amplifying mRNA Vaccines[J]. China Biotechnology, 2020, 40(12): 25-30.
[9] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[10] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[11] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[12] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[13] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[14] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[15] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.