Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (1): 34-40    DOI: 10.13523/j.cb.20150105
    
Differentially Expressed Analysis on the Responsive Genes to Salt Stress in Sunflower by cDNA-AFLP
SUN Rui-fen, ZHANG Yan-fang, GUO Shu-chun, YU Hai-feng, LI Su-ping, QIAO Hui-lei, NIE Hui, AN Yu-lin
Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Huhhot 010031, China
Download: HTML   PDF(632KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: This study was conducted to elucidate the response of genes in sunflower to salt-stress, isolate and identify the genes related to salt tolerance. Methods: The differentially expressed gene fragments produced after being treated with salt were analyzed by cDNA-AFLP. Results: 232 primer pairs obtaining differential expressed bands were acquired from 256 primers combinations. Using these primer pairs, a total of 845 differentially expressed up-regulated transcript-derived fragments(TDFs) were selectively amplified, 42 positive TDFs from them were identified after the second PCR amplification and reverse Northern blot. 12 TDFs of which were cloned and sequenced, and 10 nucleotide sequences were obtained. By Blastx analysis, 10 TDFs were tightly related to salt tolerence of sunflower, being involved in signal transduction related proteins, abiotic stress related functional proteins, senescene associated proteins and proteins associated with protein interaction. Conclusion: A number of genes that respond to salt stress were identified using cDNA-AFLP, the results will lay a foundation for determining potential molecular mechanisms of salt tolerance and the practice of molecular breeding of sunflower.



Key wordsSunflower      Salt stress      cDNA-AFLP      Differentially expressed genes     
Received: 09 September 2014      Published: 25 January 2015
ZTFLH:  Q786  
Cite this article:

SUN Rui-fen, ZHANG Yan-fang, GUO Shu-chun, YU Hai-feng, LI Su-ping, QIAO Hui-lei, NIE Hui, AN Yu-lin. Differentially Expressed Analysis on the Responsive Genes to Salt Stress in Sunflower by cDNA-AFLP. China Biotechnology, 2015, 35(1): 34-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150105     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I1/34


[1] Bachem C W B, Van der Hoeven R S, de Bruijn S M, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant Journal, 1996, 9 (5): 7452-7531.

[2] Yang L, Zheng B S, Mao C Z, et al. cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 2003, 314: 141-148.

[3] 秘彩莉, 张学勇, 温小杰, 等. 利用cDNA-AFLP技术获得小麦耐盐性相关基因TaVHA-C. 中国农业科学, 2006, 39(9): 1736-1742. Bei C L, Zhang X Y, Wen X J, et al. Isolation of TaVHA-C, a gene in wheat related to salt-tolerence via cDNA-AFLP. Scientia Agricultura Sinica, 2006, 39(9): 1736-1742.

[4] 陈银华, 韩树梅, 沙爱华, 等. cDNA-AFLP法筛选红树植物盐应答基因.中国农业科学, 2008, 41(12): 4257-4263. Chen Y H, Han S M, Sha A H, et al. Differental analysis of salt response genes by cDNA-AFLP in Mangrove. Scientia Agricultura Sinica, 2008, 41(12): 4257-4263.

[5] 师恭曜,王玉美,华金平.水通道蛋白与高等植物的耐盐性. 中国农业科技导报, 2012, 14(4):31-38. Shi G Y, Wang Y M, Hua J P. Aquaporins and salt tolerance of higher plants. Journal of Agricultural Science and Technology, 2012, 14(4):31-38.

[6] 李桂英,田玉富,杨成君.植物GRAS家族转录因子的研究现状.安徽农业科学, 2014, 42(14): 4207-4210. Li G Y, Tian Y F, Yang C J. Research situation of GRAS family transcription factor in plants. Journal of Anhui Agri Sci, 2014, 42(14): 4207-4210.

[7] Czikkel B E, Maxwell D P. NtGRAS1, a novel stress-induced member of the GRAS family in tobacco, localizes to the nucleus. Journal of Plant Physiology, 2007, 164(9):1220-1230.

[8] 马洪双, 夏新莉, 尹伟龙. 胡杨 SCL7 基因及其启动子片段的克隆与分析. 北京林业大学学报, 2011, 33(1): 1-10. Ma H S, Xia X L, Yin W L. Cloning and analysis of SCL7 gene from Populus euphratica. Journal of Beijing Forestry University. 2011, 33(1): 1-10.

[9] 郭虹霞,王创云,赵丽, 等.小分子热激蛋白的研究进展.山西农业科学, 2013, 41(12): 1421-1423. Guo H X, Wang C Y, Zhao L, et al. Research progress of small heat shock protein. Journal of Agricultural Sciences. 2013, 41(12): 1421-1423.

[10] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 2004, 9: 244-252.

[11] Coca M A, Almoguera C, Jordano J. Expression of sunflower lower-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Molecular Biology,1994, 25(3): 479-492.

[12] Almoguera C, Coca M A, Jordano J. Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant Journal, 1993,4(6): 947-958.

[13] 刘大丽, 张欣欣, 程玉祥, 等. 逆境下水稻(Dryza sative L.) rHSP90 基因的克隆及功能分析. 分子植物育种, 2006, 4(3): 317-322. Liu D L, Zhang X X, Cheng Y X, et al. Cloning and characterization of the Rhsp90 genes in rice(Dryza sative L.)under environment stress. Molecular Breeding, 2006, 4(3): 317-322.

[14] DeVries A L,Wohlschlag D E. Freeze resistance in some Antarctic fishes. Science, 1969, 163:1073-1075.

[15] 李文柯, 马春森. 抗冻蛋白特征、作用机理与预测新进展. 生命科学, 2012, 24(10):1089-1097. LI W K, MA C S. Present properties,mechanise and prediction of antifreeze proteins. Chinese Bulletin of Life Sciences. 2012, 24(10): 1089-1097.

[16] Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science, 1998, 282 (5386):115-117.

[17] 李荣, 牛向丽, 苗雁文,等. 水通道蛋白基因 OsPIP2;6 的功能分析.中国农业科学, 2013, 46(15): 3079-3086. Li Y, Niu X L, Miao Y W, et al. Functional characterization of the plasma intrinsic protein gene OsPIP2;6 in rice. Scientia Agricultura Sinica, 2013, 46(15): 3079-3086.

[18] Przedpelska-Wasowicz E M, Wierzbicka M. Gating of aquaporins by heavy metals in Allium cepa L. epidermal cells. Protoplasma, 2010, 248(4): 663-671.

[19] Vera-Estrella R, Barkla B J, Bohnert H J, et al. Novel regulation of aquaporins during osmotic stress. Plant Physiology, 2004, 135(4): 2318-2329.

[20] 汤莉, 汤晖, Sang-Soo K, 等. 转铜/锌超氧化物歧化酶和抗坏血酸过氧化物酶基因马铃薯的耐氧化和耐盐性研究. 中国生物工程杂志, 2008, 28(3): 25-31. Tang L, Tang H, Sang-Soo K, et al. Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase. China Biotechnology, 2008, 28(3): 25-31.

[21] 王爱勤,王自章,杨丽涛,等.乙烯生物合成途径中的两个关键酶基因的研究进展.广西农业生物科学, 2004,23(2):164-169. Wang A Q, Wang Z Z, Yang L T, et al. Research progress of two key enzyme genes on the ethylene biosynthesis. Journal of Guangxi Agric and Biol Science, 2004,23(2):164-169.

[22] 陈银华, 黄伟, 王海. ACC氧化酶基因研究进展. 海南大学学报:自然科学版, 2006, 24(2): 194-200. Cheng Y H, Huang W, Wang H. Review on researching advance in ACC oxidase genes. Natural Science Journal of Hainan University, 2006, 24(2): 194-200.

[23] 刘进平. 乙烯生物合成关键酶基因研究进展. 热带农业科学, 2013, 33(1): 51-57. Liu J P. Advances in research on key enzyme gengs of ethylene biosynthesis. Chinese Journal of Tropical Agriculture, 2013, 33(1): 51-57.

[24] Choudhury S R, Roy S, Sengupta D N. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding,cold and different photoperiods during ripening in banana fruit. Journal of Plant Physiology, 2008, 165(18): 1865-1878.

[25] 李明亮, 韩一凡. 乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制. 林业科学, 2000, 36(4): 77-84. Li M L, Han Y F. Efeect of ethylene on the growth and development of plants and inhibition of its biosynthesis by antisense RNA. Scientia Silvae Sinicae, 2000,36(4): 77-84.

[26] 薛丽君, 周精华, 邢虎成. 苎麻ACC氧化酶基因( BnACO1 )的克隆及表达研究. 中国农业科学, 2013, 46(11): 2377-2385. Xue L J, Zhou J H, Xing H C. Cloning and characterization of ACC oxidase gene( BnACO1 ) from rame (Boehmeria nivea). Scientia Agricultura Scienca, 2013, 46(11): 2377-2385.

[27] Jiang Y Q, Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed arabidopsis roots reveals classes of responsive genes. BMC Plant Biology, 2006, 6(25):1-20.

[28] CaoW H, Liu J, Zhou Q Y, et al. Expression of tobacco ethylene receptor NTHK1 alters plantresponses to salt stress. Plant, Cell and Environment, 2006, (29): 1210-1219.

[29] 董发才, 宋纯鹏. 植物细胞中的泛素及其生理功能. 植物生理学通讯, 35(1):54-59. Dong F C, Song C P. The ubiquitin and its physiological functions in plants. Plant Physiology Communications, 35(1): 54-59.

[30] Park G G, Park J J, Yoon J M, et al. A RING finger E3 ligase gene, Oryza sative delayed seed germination 1( OsDSG1 ), controls seed germination and stress responses in rice. Plant Mol Biol, 2010, 74(4-5): 467-478.

[1] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[2] SUN Rui-fen, ZHANG Yan-fang, GUO Shu-chun, YU Hai-feng, LI Su-ping, QIAO Hui-lei, NIE Hui, AN Yu-lin. Cloning and Expression Analysis of ACC Oxidase Gene ( HaACO1) from Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2015, 35(9): 21-27.
[3] HE Yi-Min- Nian-Hong-Juan- Chen-Li-Mei. Genetic Progress in Plant Resistance to Salt Stress[J]. China Biotechnology, 2009, 29(03): 100-104.
[4] Sang-Soo KWAK Haeng-Soon LEE Xiao-Li Yang. Improving potato plants oxidative stress and salt tolerance by gene transfer both of Cu/Zn superoxide dismutase and ascorbate peroxidase[J]. China Biotechnology, 2008, 28(3): 25-31.