Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (10): 67-72    DOI: 10.13523/j.cb.20141011
    
In Vivo Imaging of Near-infrared Fluorescent Protein in Skeletal Muscle of Mice Mediated by Recombinant Adeno-associated Virus
TIAN Ting1,2,3, CHANG Jian2, ZHANG Xin2, JIANG Chen-yu2, ZHANG Yun-hai2, LIU Xiao-mei2, ZHANG Chun2
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(1434KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Near-infrared fluorescent protein (iRFP) which effectively reduces light absorption and scattering in animal tissues is suitable for living animal deep tissue imaging. Eukaryotic expression vector, pAAV-iRFP713, near-infrared fluorescent protein 713 (iRFP) was constructed. Recombinant adeno-associated virus, rAAV-iRFP713, was packaged. In vitro infection of cancer cells with rAAV-iRFP713 resulted in the strong expression of near-infrared fluorescent protein after 48h. rAAV-iRFP713 was injected into skeletal muscle of mice. Strong in vivo fluorescence signal was detected with the infrared fluorescence imaging system 48h after injection of rAAV-iRFP713. The results suggest that rAAV could deliver near-infrared fluorescent reporter gene in vitro and in vivo and iRFPs might be favorable fluorescent molecular labeling agents for living dynamic animal imaging.



Key wordsAdeno-associated virus      Living tissue imaging      Near-infrared fluorescent protein      Gene expression      Fluorescent molecular labeling     
Received: 12 August 2014      Published: 25 October 2014
ZTFLH:  Q786  
Cite this article:

TIAN Ting, CHANG Jian, ZHANG Xin, JIANG Chen-yu, ZHANG Yun-hai, LIU Xiao-mei, ZHANG Chun. In Vivo Imaging of Near-infrared Fluorescent Protein in Skeletal Muscle of Mice Mediated by Recombinant Adeno-associated Virus. China Biotechnology, 2014, 34(10): 67-72.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141011     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I10/67


[1] Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol, 1962,59:223-239.

[2] Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea-Victoria Green-Fluorescent Protein. Gene, 1992,111(2):229-233.

[3] Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene-expression. Science, 1994,263(5148):802-805.

[4] Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 1994,91(26):12501-12504.

[5] Heim R, Cubitt A B, Tsien R Y. Improved Green Fluorescence. Nature, 1995,373(6516):663-664.

[6] Wachter R M, King B A, Heim R, et al. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry, 1997,36(32):9759-9765.

[7] Matz M V. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnology, 1999,17(12):1227-1227.

[8] Shu X K, Royant A, Lin M Z, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science, 2009,324(5928):804-807.

[9] Filonov G S, Piatkevich K D, Ting L M, et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol, 2011,29(8):757-761.

[10] Shcherbakova D M, Verkhusha V V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods, 2013,10(8):751-754.

[11] Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harbor Perspectives in Biology, 2010,2(12):a003848.

[12] Graves E E, Weissleder R, Ntziachristos V. Fluorescence molecular imaging of small animal tumor models. Current Molecular Medicine, 2004,4(4):419-430.

[13] Hoffman R M. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncology, 2002,3(9):546-556.

[14] Krumholz A, Shcherbakova D M, Xia J, et al. Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. Sci Rep, 2014,4:3939.

[15] Shcherbakova D M, Verkhusha V V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods, 2013,10(8):751.

[16] Jiguet-Jiglaire C, Cayol M, Mathieu S, et al. Noninvasive near-infrared fluorescent protein-based imaging of tumor progression and metastases in deep organs and intraosseous tissues. Journal of Biomedical Optics, 2014,19(1):16019.

[17] Mai Thi Nhu TraN J T, Michito H, Yuka S, et al. In vivo image analysis using iRFP transgenic mice. Exp Anim, 2014,63(3):311-319.

[18] Lyons S K, Patrick P S, Brindle K M. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc, 2013,2013(8):685-699.

[19] Piatkevich K D, Subach F V, Verkhusha V V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nature Communications, 2013,4:2153.

[20] Filonov G S, Verkhusha V V. A Near-Infrared BiFC reporter for In vivo imaging of protein-protein interactions. Chemistry & Biology, 2013,20(8):1078-1086.

[21] Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins. Nature Methods, 2005,2(12):905-909.

[22] Lecoq J,Schnitzer M J. An infrared fluorescent protein for deeper imaging. Nature Biotechnology, 2011,29(8):715-716.

[23] Henckaerts E, Linden R M. Adeno-associated virus: a key to the human genome? Future Virology, 2010,5(5):555-574.

[24] Recchia A, Perani L, Sartori D, et al. Site-specific integration in human somatic cell DNA by adeno/AAV hybrid vectors. Molecular Therapy, 2004,9:S25-S26.

[1] WANG Cong,LI Xiu,NIU Miao,DAI Yang-guang,DONG Zhe-yue,DONG Xiao-yan,YU Shuang-qing,YANG Yi-shu. Research on AAV9 Infectious Titer Detection Method Based on TCID50[J]. China Biotechnology, 2021, 41(10): 28-32.
[2] Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro[J]. China Biotechnology, 2018, 38(6): 9-16.
[3] Li-peng YAO,Wei GE,Ying-jun HU,Hai-yan LUO,Shan-shan WU,Fei-lei LIN,Jun-ming GUO. The Structural and Functional Characteristics of Circular RNAs and Their Relationships with Gastric Cancer[J]. China Biotechnology, 2018, 38(2): 82-88.
[4] ZHANG Yan-fang, SUN Rui-fen, GUO Shu-chun, HOU Jian-hua. Cloning and Expression Analysis of V-type Proton ATPase Subunit a3 Gene in Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2017, 37(5): 19-27.
[5] XIANG Li, WANG Shen, TIAN Hai-shan, ZHONG Mei-juan, ZHOU Ru-bin, CAO Ding-guo, LIANG Peng, ZHANG Guo-ping, HE Tao, PANG Shi-feng. Constructing Mouse pET3C-Myc Vector and Its Expression in Rosetta(DE3) and Its Purification[J]. China Biotechnology, 2017, 37(2): 20-25.
[6] WANG Xi-guang, WANG Juan, ZHANG Lin. A. thaliana Protein Abundance Analysis Coresponding with Elongation Efficiency[J]. China Biotechnology, 2017, 37(2): 40-47.
[7] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[8] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[9] LI Da, DAI Peng, WANG Wei, ZHANG Wen-tao, WANG Qin, SHU Yi, ZHU Chun-lai, JI Qi-feng, LIANG Ping, YAN Zhen. Cloning and Expression of PLCE1 Gene and Its Haplotypes of rs2274223 and rs3765524[J]. China Biotechnology, 2016, 36(12): 1-7.
[10] SUN Rui-fen, ZHANG Yan-fang, GUO Shu-chun, YU Hai-feng, LI Su-ping, QIAO Hui-lei, NIE Hui, AN Yu-lin. Cloning and Expression Analysis of ACC Oxidase Gene ( HaACO1) from Sunflower (Helianthus annuus L.)[J]. China Biotechnology, 2015, 35(9): 21-27.
[11] ZHA Dai-ming, ZHANG Bing-huo, LI Han-quan, YAN Yun-jun. Research Advances in Molecular Biology of Pseudomonas Lipases[J]. China Biotechnology, 2015, 35(9): 114-121.
[12] GAO Fei, ZHOU Jing, LIU Xiao-tong, LI Cheng-lei, YAO Hui-peng, ZHAO Hai-xia, WU Qi . Cloning and Expression Analysis One Zinc Finger Protein Gene FtLOL1 in Fagopyrum tataricum: Effect of Abiotic Stress[J]. China Biotechnology, 2015, 35(8): 44-50.
[13] XU Deng-an, ZHAO Chun-qin, ZHANG Chi-hong, CHEN Jing. Expression Patterns of a Root-specific Barley Aquaporin Gene HvTIP2;1 and Promoter[J]. China Biotechnology, 2015, 35(7): 15-21.
[14] CUI Cheng-cheng, BI Yan-hong, WANG Ying-ming, LI Pan, YANG Si-da, HUANG Fen, ZENG Wei-kun, JING Shen-rong. Screening of ER3 Sequences Enhanced Protein Expression Activity and Its Functional Regions Identification[J]. China Biotechnology, 2015, 35(3): 18-24.
[15] WANG Hai-bo, YE Yu-jia, MENG Zhao-hui. Preliminary Crystallization of Human Thyroid Hormone Receptor Interacting Protein 15 and Its Expression in Human Tissue[J]. China Biotechnology, 2014, 34(4): 21-26.