Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (8): 105-110    DOI:
    
Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology
ZHANG Qi1, NING Xi-bin1, ZHANG Ji-lun2
1. College of Food Science and Technology, Shanghai Ocean University, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China;
2. Comprehensive Laboratory of Shanghai Airport Entry-Exit Inspection and Quarantine Bureau, Shanghai 201207, China
Download: HTML   PDF(439KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Minitab 16 software was applied to optimize the conditions for protease production of marine bacteria SE2011. On the basis of single factor experiments, the Plackett-Burman design was utilized to analyze effect factors. Among the eight factors studied, salinity, pH value and volume of medium per flask had significant effects on protease production (P<0.05). The path of steepest ascent was undertaken to approach the optimal region of the protease production. The regression analysis was further investigated by using Box-Behnken design and response surface analysis. By solving regession equation, the highest protease production was obtained at salinity 2.0%, pH 8.0 and volume of medium 23 ml per flask. The protease production reached to 1336.462 U/ml, which increased 82.3% compared to the initial 733.269 U/ml.

Key wordsProtease      Plackett-Burman design      Steepest ascent path      Response surface methodology      Marine bacteria     
Received: 20 March 2013      Published: 25 August 2013
ZTFLH:  Q819  
Cite this article:

ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology. China Biotechnology, 2013, 33(8): 105-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I8/105

[1] Mehta V J, Thumar J T, Singh S P. Production of alkaline protease from an alkaliphilic actinomycete. Bioresource Technol, 2006, 97(14): 1650-1654.
[2] 马永强, 张浩, 杨春华, 等. 地衣芽孢杆菌2709蛋白酶分离纯化研究. 食品科学, 2010, 31(11):141-146. Ma Y Q, Zhang H, Yang C H, et al. Seperation and purication of protease from Bacillus licheniformis 2709. Food Science, 2010, 31(11):141-146.
[3] Deng A, Wu J, Zhang Y, et al. Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour Technol, 2010, 101(18): 7100-7106.
[4] Reddy L V A, Wee Y J, Yun J S, et al. Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour Technol, 2008, 99(7): 2242-2249.
[5] Chang M Y, Tsai G J, Houng J Y. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method. Enzyme and Microbial Technology, 2006, 38(3-4): 407-414.
[6] Wen W T, Tsou T Y, Liu H L. Response surface optimization of microbial prodigiosin production from Serratia marcescens. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(2):217-222.
[7] 张祁, 宁喜斌. 上海临港海域产蛋白酶海洋细菌的筛选及鉴定. 食品工业科技, 2013, (3):192-197. Zhang Q, Ning X B. Isolation and identification of protease-producing marine bacteria from Shanghai Lingang sea area. Science and Technology of Food Industry, 2013, (3):192-197.
[8] Lyman J, Fleming R H. Compositon of seawater. Marine Res, 1940, 3:134-146.
[9] 张晓华. 海洋微生物学. 北京: 中国海洋大学出版社,2007.316. Zhang X H. Marine Microbiology. Beijing: China Ocean University Press, 2007.316.
[10] 李丹, 陈丽, 李富超, 等. 一株产低温碱性蛋白酶海洋细菌Pseudoalteromonas flavipulchra HH407的筛选与生长特性. 食品与生物技术学报, 2007, 26(6): 74-80. Li D, Chen L, Li F C. Isolation and physiological characterization of a marine psychrotroph Pseudoalteromonas flacipulchra HH407 producing cold-active alkaline protease. Journal of Food Science and Biotechnology, 2007, 26(6): 74-80.
[11] 中华人民共和国专业标准(SB/T 10317-1999) . 蛋白酶活力测定法. 北京: 中国标准出版社, 1999. Professional Standards of the People's Republic of China (SB/T 10317-1999). Measurement of Protease Activity. Beijing: China Standard Publishing House, 1999.
[1] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[2] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[3] Jie ZENG. Advances in Study of Properties, Recombinant Expression and Applications of Lysyl Endopeptidase[J]. China Biotechnology, 2018, 38(3): 89-96.
[4] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[5] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[6] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.
[7] CUI Hong-di, SHAO Zheng, DENG Li, SITU Yong-li, PENG Li-fei. Prokaryotic Expression, Purification and Activity Study of Kunitz Type Serine Protease Inhibitor IsKuI-1[J]. China Biotechnology, 2014, 34(12): 30-35.
[8] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[9] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[10] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[11] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[12] LI Rui-rui, LIU Dian-lei, YANG Qing, HAO Qiong, JIANG Kai-kai, LI Pi-wu. Optimization of Fermentation Conditions for Glucose Oxidase Production by Aspergillus niger using Response Surface Method[J]. China Biotechnology, 2013, 33(10): 111-116.
[13] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[14] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[15] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.