Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (8): 67-74    DOI:
    
Engineering E.coli for Isobutanol Production by Two-promoter Vectors
ZHENG Li-juan, CHEN Shao-yun, XU Gang, WU Jian-ping, YANG Li-rong
Zhejiang University, Hangzhou 310027, China
Download: HTML   PDF(538KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  In order to engineer E.coli for efficient isobutanol production, the two-promoter plasmids, pCDFDuet, pRSFDuet and pACYCDuet were utilized to coexpress the isobutanol biosynthetic enzymes. These plasmids are compatible, and each has two T7 promoters. The kivd and alsS genes were coexpressed using the plasmid pCDFDuet. The yqhD and ilvCD genes were coexpressed using the plamid pRSFDuet or pACYCDuet. Thus, two coexpression systems were constructed, resulting in recombinant E. coli named as Eco(CDF+RSF) and Eco(CDF+ACYC), respectively. Eco(CDF+RSF) produced isobutanol 2.7g/L, while Eco(CDF+ACYC) produced more, up to 3.5g/L. The analysis of expression level and activity of each enzyme showed that AHAS and KDCA were expressed more efficiently in Eco(CDF+ACYC), suggesting their important roles in enhanced isobutanol production. In conclusion, the recombinant E. coli Eco(ACYC+CDF) was successfully constructed using two-promoter vectors. It had high isobutanol productivity and was suitable for further engineering for industrial application.

Key wordsIsobutanol      E.coli      two-T7 promoter vector      Coexpression     
Received: 11 April 2013      Published: 25 August 2013
ZTFLH:  Q785  
Cite this article:

ZHENG Li-juan, CHEN Shao-yun, XU Gang, WU Jian-ping, YANG Li-rong. Engineering E.coli for Isobutanol Production by Two-promoter Vectors. China Biotechnology, 2013, 33(8): 67-74.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I8/67

[1] 李十中. 生物燃料替代石油—产业现状与可持续发展. 中国工程科学, 2011, 13: 50-54. Li S Z. Biofuel as an alternative to oil—current industry progress and sustainble development. Engineering Sciences, 2011, 13: 50-54.
[2] Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories, 2010, 9: 1-15.
[3] 朱万斌, 李杰, 袁旭峰, 等. 国际生物能源研究开发现状和趋势. 中国工程科学, 2011, 13(2): 96-100. Zhu W B, Li J, Yuan X F, et al. Current status and trend of international development of bioenergy. Engineering Sciences, 2011, 13(2): 96-100.
[4] Liao J C, Atsumi S, Hanai T. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Journal of Nature, 2008, 451: 86-89.
[5] 林丽华, 郭媛, 庞浩, 等. 大肠杆菌中表达关键基因产异丁醇的研究. 生物技术, 2011, 21: 19-23. Lin L H, Guo Y, Pang H, et al. Research of isobutanol production in Escherichia coli expressing of the key genes. Biotechnology Bulletin, 2011, 21: 19-23.
[6] 郭媛, 林丽华, 郭玲, 等. 基因敲除提高大肠杆菌重组菌生产异丁醇产量的研究. 生物技术, 2012, 7: 170-175. Guo Y, Lin L H, Guo L, et al. Influence of isobutanol production in gene defective mutant of Escherichia coli. Biotechnology Bulletin, 2012, 7: 170-175.
[7] Chen X, Nielsen K F, Borodina I, et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnology for Biofuels, 2011, 4: 21.
[8] Kondo T, Tezuka H, Ishii J, et al. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Journal of Biotechnology, 2012, 159: 32-37.
[9] Smith K M, Cho K M, Liao J C. Engineering Corynebacterium glutamicum for isobutanol production. Applied Genetics and Molecular Biotechnology, 2010, 87: 1045-1055.
[10] Blombach B, Riester T, Wieschalka S, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Applied and Environmental Microbiology, 2011, 77(10): 3300-3310.
[11] Li S S, Wen J P, Jia X Q. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Applied Microbiology and Biotechnology, 2011, 91: 577-589.
[12] Li S S, Huang D, Li Y, et al. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microbial Cell Factories, 2012, 11: 101.
[13] 何彰华, 王洋, 赵珺, 等. 一种多基因串联共表达载体的构建. 中国生物工程杂志, 2011, 31(1): 40-45. He Z H, Wang Y, Zhao J, et al. Construction of a vector suitable for the tandem coexpression of multiple genes by a single plasmid. China Biotechnology, 2011, 31(1): 40-45.
[14] Kim K J, Kim H E, Lee K H, et al. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Science, 2004, 13: 1698-1703.
[15] Higashide W, Li Y C, Yang Y F, et al. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Applied and Environmental Microbiology, 2011, 77: 2727-2733.
[1] TIAN Cong-hui, XIE Xue-mei, LI Ying, YIN Xiao-dong, HAN Jun, LI Jun. Construction of the IRES-based Vector for Multiple Gene Co-expression[J]. China Biotechnology, 2017, 37(7): 97-104.
[2] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, MO Ting, LIU Jin-yi, YAO Wen-bing. Expression of Soluble Anti-TNF-α Fab in E.coli: Optimization for Technological Process[J]. China Biotechnology, 2016, 36(9): 31-37.
[3] ZHANG Yu-meng, TONG Mei, LU Xiao-dong, MI Yue, XU Chen, YAO Wen-bing. Advances in Promoting Soluble Expression of Recombinant Protein in Escherichia coli[J]. China Biotechnology, 2016, 36(5): 118-124.
[4] LUO Feng, DUAN Xu-guo, SU Ling-qia, WU Jing. Cloning,Expression and Fermentation Optimization of Thermobifida fusca Trehalose Synthase Gene in E.coli[J]. China Biotechnology, 2013, 33(8): 98-104.
[5] LIU Qi-gang, DAI Yun-jian, ZHANG Yong-xia, WANG Bao-cheng, WANG Ming-rong. Efficient Soluble Expression of Anti-IgE scFv in E.coli and Optimization of Expression Conditions[J]. China Biotechnology, 2012, 32(11): 23-28.
[6] LIU Qi-gang, DAI Yun-jian, ZHANG Yong-xia, WANG Bao-cheng, WANG Ming-rong. Efficient Soluble Expression of Anti-IgE scFv in E.coli and Optimization of Expression Conditions[J]. China Biotechnology, 2012, 32(11): 23-28.
[7] MA Rong, XU Hao, DING Rui, AO Yong-hua, ZHANG Li-jun. The Strategy of Gene Coexpression in Escherichia coli[J]. China Biotechnology, 2012, 32(04): 117-122.
[8] ZHAN Sheng, YIN Xing-feng, LI Hui, LI Nan, YANG Xiao-yan, SUN Xue-song. Effect of the Incubation Time in the Enrichment of the Phosphopeptides with Titanium Dioxide[J]. China Biotechnology, 2012, 32(03): 59-62.
[9] FU Feng-gen, XU Zheng, LI Gui-xiang, LI Sha, FENG Xiao-hai, XU Hong. D-tagatose Production Utilizing Immobilized Recombinant Escherichia coli cells[J]. China Biotechnology, 2011, 31(7): 85-90.
[10] NIU, Wei-ning, YANG Meng-lin, CAO Shan-shan, XU Le, QIN Chuan-guang. Expression, Purification and Activity Assay of the Full-length and Truncated Human Cystathionine β-Synthase[J]. China Biotechnology, 2011, 31(12): 15-21.
[11] ZHU Lei, WANG Qing-min, WU Guo-dong, XUE Tong-tong, SUN Li-xia, WANG Jing-yi. Expression, Purification and Activity Identification of Urate Oxidase in Escherichia coli[J]. China Biotechnology, 2011, 31(04): 83-86.
[12] WANG Chen, LI Sha, XU Hong, WEI Yan, CAI Heng. Optimization of Fermentation Medium of Sucrose Isomerase by Recombinant Escherichia coli through Response Surface Method[J]. China Biotechnology, 2011, 31(04): 92-97.
[13] JING Ying-ying, YANG Yu, WANG Jing, YANG Yong-li, HU Kong-xin, WANG Zhen-dong. Preparation of Two Different Lengths of FopA Antigen and Antibody Used in Francisella tularemia Detecting[J]. China Biotechnology, 2010, 30(12): 76-81.