Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (7): 112-117    DOI:
    
Research Progress of Genetic Adjuvant
MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
Download: HTML   PDF(969KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Genetic adjuvant is a member of the immune adjuvant family. With the development of study, the important application value of genetic adjuvant is found gradually. The concept and mechanism of genetic adjuvant, and several development directions of candidate target genes of genetic adjuvant were summarized and reviewed. Additionally, the applications of genetic adjuvant were also discussed briefly. We hope it can provide references for further studying and use of the genetic adjuvant in prevention and cure of livestock and poultry diseases and human medicine.

Key wordsGenetic Adjuvant      MicroRNA      Immune      Cytokine     
Received: 18 February 2013      Published: 25 July 2013
ZTFLH:  Q342  
Cite this article:

MAN Chao-lai, CHANG Yang, TANG Gao-xia, ZHAO Li, LI Feng, ZHEN Xin, MI Xiao-ju. Research Progress of Genetic Adjuvant. China Biotechnology, 2013, 33(7): 112-117.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I7/112

[1] Cox J C, Coulter A R. Adjuvants-a classification and review of their modesofaction. Vaccine, 1997, 15(3): 248-256.
[2] 谢荣辉, 万旺军, 李龙, 等. 鸡白细胞介素2口服免疫佐剂增强传染性法氏囊病病毒DNA疫苗免疫效果的研究. 浙江大学学报(农业与生命科学版), 2007, 33(3): 237-242. Xie R H, Wan W J, Li L, et al. Enhancement of immunogenicity of DNA vaccine against infectious bursal disease virus by co-delivery with oral vaccine encoding chicken interleukin-2. Journal of Zhejiang University (Agriculture and Life Sciences), 2007, 33(3): 237-242.
[3] 于涟, 李建荣, 黄耀伟,等. 鸡白细胞介素2增强传染性法氏囊病病毒多聚蛋白DNA疫苗免疫原性的研究. 生物工程学报, 2001, 17(6): 652-657. Yu L, Li J R, Huang Y W, et al. Enhanced Immunogenicity of Plasmid Encoding Polyprotein Gene of Infectious Bursal Disease Virus by Co-administration of Chicken Interleukin 2 (IL-2). Chinese Journal of Biotechnology, 2001, 17(6): 652-657.
[4] 姜永厚, 陈羹励, 宋秀龙,等. 鸡新城疫病毒F基因和鸡IL-2重组疫苗的构建. 中国预防兽医学报, 2001, 23(2): 81-83. Jiang Y H, Chen J L, Song X L, et al. Construction of the Recombinant Plasmid Coexpressing NDV F Gene and Chicken IL-2. Chinese Journal of Preventive Veterinary Medicine, 2001, 23(2): 81-83.
[5] 邵卫星, 卢建红, 彭大新, 等. 重组鸡痘病毒表达的鸡IL-1B和IL-2以及cMGF对新城疫LaSota疫苗免疫效果的影响. 中国兽医科学, 2006, 36(8): 617-620. Shao W X, Lu J H, Peng D X, et al. Effects of chicken IL-1β, IL-2 and cMGF expressed by the recombinant fowlpox viruses on immunization with NDV LaSota vaccine. Veterinary Science in China, 2006, 36(8): 617-620.
[6] Lillehoj H S, Kang S Y, Keller L, et al. Eimeria tenella and E. acervulina: lymphokines secreted by an avian T cell lymphoma or by sporozoite-stimulated immune T lymphocytes protect chickens against avian coccidiosis. Exp Parasitol, 1989, 69(1): 54-64.
[7] 徐前明, 李培英, 查日华. 鸡白介素-2对柔嫩艾美耳球虫亚单位疫苗免疫增强作用的研究. 安徽农业科学, 2005, 33(2): 290-293. Xu Q M, Li P Y, Cha R H. Study on the Immune Capability-increasing of Chicken through the Application of Baijiesu-2. Journal of Anhui Agricultural Sciences, 2005, 33(2): 290-293.
[8] Annamalai T, Selvaraj R K. Effects of in ovo interleukin-4-plasmid injection on anticoccidia immune response in a coccidia infection model of chickens. Poult Sci, 2012, 91(6): 1326-1334.
[9] Grakoui A, Wychowski C, Rice C M, et al. Expression and Identification of Hepatitis C Virus Polyprotein Cleavage Products. J Viro, 1993, 67(3):1385-1395.
[10] 胡慧琼, 王红宁, 袁斌, 等. 鸡IL-2和IL-15基因真核表达质粒对禽流感疫苗的免疫增强作用. 中国兽医科学, 2006, 36(10): 805-810. Hu H Q, Wang H N, Yuan B, et al. Immunoenhancement of eukaryotic expression plasmids with chicken IL-2 or IL-15 genes on H5 subtype avian influenza vaccine. Veterinary Science in China, 2006, 36(10): 805-810.
[11] Ma Y, An H J, Wei X Q, et al. Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant. Hum Vaccin Immunother, 2013, 9(2).
[12] 刘蕊娜, 邹年莉, 王红宁, 等. 鸡IL-6真核表达载体的构建及其对新城疫LaSota疫苗的免疫增强作用研究. 畜牧兽医学报, 2009, 40(1): 93-97. Liu R N, Zou N L, Wang H N, et al. Construction of Eukaryotic Expression Plasmids Encoding Chicken Interleukin-6 and Study on Its Immunoenhancement on Newcastle Disease LaSota Vaccine. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(1): 93-97.
[13] Jeon B Y, Eoh H, Ha S J, et al.Co-immunization of plasmid DNA encoding IL-12 and IL-18 with Bacillus Calmette-Guérin vaccine against progressive tuberculosis. Yonsei Med J, 2011, 52(6): 1008-1015.
[14] Hirao L A, Wu L, Khan A S, et al. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine, 2008, 26(25): 3112-3120.
[15] Jalah R, Patel V, Kulkarni V, et al. IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Hum Vaccin Immunother, 2012, 8(11)1620-1629.
[16] Calarota S A, Dai A, Trocio J N, et al. IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine. Vaccine, 2008, 26(40): 5188-5195.
[17] 陈红英, 李新生, 金钺, 等. 鸡IL-18重组真核表达载体的构建及其对ND灭活苗的佐剂作用. 江西农业大学学报, 2009, 31(5): 793-797. Chen H Y, Li X SH, Jin Y, et al. Construction of Eukaryotic Expression Plasmids Encoding Chicken IL-18 Gene and Its Immunoenhancement on Newcastle Disease Inactivated Vaccine. Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(5): 793-797.
[18] 程相朝, 赵德明, 吴庭才,等. 鸡IL-18真核表达载体的构建及其对新城疫疫苗免疫增强作用的研究. 畜牧兽医学报, 2005, 36(5): 476-481. Cheng X C, Zhao D M, Wu T C, et al. Construction of Eukaryotic Expression Plasmids Encoding Chicken IL-18 Gene and Study on Its Immunoenhancement on Newcastle Disease Vaccine. Chinese Journal of Animal and Veterinary Sciences, 2005, 36(5): 476-481.
[19] 吕冬梅, 翁继峰, 于涟. 鸡胚接种鸡白介素18重组质粒对IBDV DNA疫苗免疫增强作用的研究. 中国预防兽医学报, 2009, 31(2): 150-155. Lv D M, Weng J F, Yu L. Immunoenhancement on IBDV DNA vaccine by embryo vaccination with plasmid DNA encoding chicken interleukin-18. Chinese Journal of Preventive Veterinary Medicine, 2009, 31(2): 150-155.
[20] Wei F, Liu Q, Zhai Y, et al. IL-18 enhances protective effect in mice immunized with a Schistosoma japonicum FABP DNA vaccine. Acta Trop. 2009, 111(3): 284-288.
[21] Sang H, Pisarev V M, Munger C, et al. Regional, but not systemic recruitment/expansion of dendritic cells by a pluronic-formulated Flt3-ligand plasmid with vaccine adjuvant activity. Vaccine, 2003, 21(21-22): 3019-3029.
[22] Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expreeion of GM-CSF transgene. Vaccine, 2007, 25(7): 1342-1352.
[23] Kawai T, Akira S. The role of pattern-recognition receptor sininnate immunity: updateon Toll-like receptors.Nat Immunol. 2010, 11(5): 373-384.
[24] 孙静静, 邵军军, 常惠芸. NF-κB免疫生物学作用的研究进展. 生物技术通报, 2011, 11: 63-69. Sun J J, Shao J J, Chang H Y. Advances of NF-κB in Immunobiology. Biotechnology Bulletin, 2011, 11: 63-69.
[25] Pack C D, Kumaraguru U, Suvas S, et al. Heat shock protein 70 acts as an effective adjuvant inneonatalmice and confers protection against challenge with herpessimplex virus, Vaccine, 2005, 23(27): 3526-3534.
[26] Park J E, Facciponte J, Chen X, et al. Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Res, 2006, 66 (2): 1161-1168.
[27] 尤红煜, 张开霞, 王俊霞, 等. Hsp70L1增强肿瘤细胞疫苗免疫原性的研究. 细胞与分子免疫学杂志, 2010, 26 (4): 340-343. You H Y, Zhang K X, Wang J X, et al. Immunoadjuvant effect of Hsp70L1 in tumor vaccine.Chinese Journal of Cellular and Molecular Immunology, 2010, 26 (4): 340-343.
[28] 靳彦文, 李平, 胥全彬,等. 超抗原SEA增强小鼠对HBVDNA疫苗的免疫反应. 生物工程学报, 2005, 21(5): 681-685. Jin Y W, Li P, Xu Q B, et al. Enhancement of Immune Responses to Hepatitis B DNA Vaccine by Superantigen SEA in Mice. Chinese Journal of Biotechnology, 2005, 21(5): 681-685.
[29] Goto A, Matsushita K, Gesellchen V, et al. Akirins, highly conserved nuclear proteins, required for NF-κB dependent gene expression in Drosophila and mice. Nat Immunol, 2008, 9: 97-104.
[30] Beutler B, Moresco E M. Akirins versus infection. Nat Immunol, 2008, 9: 7-9.
[31] Boldin M P, Baltimore D. MicroRNAs, new effectors and regulators of NF-κB. Immunological Reviews, 2012, 246(1): 205-220.
[32] Lindsay M A. microRNAs and the immune response. Trends in Immunology, 2008. 29(7): 343-252.
[33] Wheatley A K, Kramski M, Alexander M R, et al. Co-expression of miRNA targeting the expression of PERK, but not PKR, enhances cellular immunity from an HIV-1 Env DNA vaccine. PLoS One, 2011, 6(3): e18225.
[34] 于可响, 张泉, 郭晓宇,等. 利用PCR 方法监测质粒DNA在鸡体内的动态分布. 山东农业科学, 2006, 6: 59-62. Yu K X, Zhang Q, Guo X Y, et al. Supervising the Dynamic Distribution of the Plasmid in Chickens by PCR. Shandong Agricultural Sciences, 2006, 6: 59-62.
[35] 白天, 王红宁, 黄勇, 等. 禽传染性支气管炎DNA疫苗在鸡体内的分布和安全性. 中国兽医学报, 2007, 27 (5): 628-631. Bai T, Wang H N, Huang Y, et al. Biodistribution and safety of IBV DNA vaccine in chickens. Chinese Journal of Veterinary Science, 2007, 27 (5): 628-631.
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] CHENG Xu,YANG Yu-qing,WU Sai-nan,HOU Qin-long,LI Yong-mei,HAN Hui-ming. Construction of DNA Vaccines of Staphylococcus aureus SarA, IcaA and Their Fusion Genes and Preliminary Study in Mouse Immune Response[J]. China Biotechnology, 2020, 40(7): 41-50.
[5] MAO Hui,LV Yu-hua,ZHU Li-hui,LIN Yue-xia,LIAO Rong-rong. The Role of Exosomes in the Diagnosis and Treatment of Viral Infection[J]. China Biotechnology, 2020, 40(3): 104-110.
[6] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[7] LIN Jian-hua,HAN Jun,Xu Han-mei. Developing the Stability of PD-1 / PD-L1 Immune Checkpoint Antibody Drug Formulation[J]. China Biotechnology, 2020, 40(10): 35-42.
[8] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[9] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[10] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[11] Wei-bing PAN,Peng ZHU,Qi-ang ZENG,Kai WANG,Song LIU. Diversity Analysis of 5 CDR3s of T Cell Receptor β Chain in Prostate Cancer[J]. China Biotechnology, 2019, 39(3): 7-12.
[12] Yu-sheng OU,Hong-jun ZHENG,Shi ZHONG,Yi LI. TAEST16001:TCR Affinity Enhanced Specific-T-cell Therapy[J]. China Biotechnology, 2019, 39(2): 49-61.
[13] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[14] Ya-fang LI,Ying-hui ZHAO,Sai-bao LIU,Wei WANG,Wei-jun ZENG,Jin-quan WANG,Hong-yan CHEN,Qing-wen MENG. Chicken OV Promoter Expressed HA to Protect Chickens from Lethal Challenge of AIV[J]. China Biotechnology, 2018, 38(7): 67-74.
[15] Yan SU,Li XU,Li-wei WANG,Yue WANG,Ping XU. The Development Situation and Suggestions of mmune Cell Therapy Industry[J]. China Biotechnology, 2018, 38(5): 104-111.