Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (7): 8-12    DOI:
    
Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S
TIAN Shuo1, YAO Wen-bin2, XU Chen3
1. Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Laboratory of Medical Molecular Biology, Beijing 100005, China;
2. School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China;
3. Beijing Tri-prime Genetic Engineering Co.Ltd., Beijing 102600, China
Download: HTML   PDF(1105KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Objective: Construct IIFN/165S through site-directed mutagenesis in order to obtain a new type of molecule with higher potency. Methods: CGT was substituted for AGT at position 165 of integrated interferon through PCR site-directed mutagenesis in vitro. The Amplified fragment was constructed in pET23b expression vector, and transformed into E. coli BL21 (DE3) pLysS. The recombinant protein was purified and the purified protein was analyzed by SDS-PAGE, Western blot and MALDI-TOF-MS. The anti-virus was determined by WISH-VSV system. The apoptosis rate was detected by flow cytometry. Result: IIFN/165S was expressed as inclusion bodies with the yield of more than 30% of total bacterial protein. The purity of IIFN/165S was more than 95% with IIFN immunogenicity, and the molecular weights of IIFN/165S was 18172. The biological activity was (7.63±0.22)×108×106 IU/mg. IIFN/165S induced Daudi cells apoptosis in a dose-dependent manner. Conclusion: The construction, expression and purification technology of IIFN/165S had been established.

Key wordsIntegrated interferon      Site-directed mutagenesis      High potency      Anti-tumor     
Received: 11 December 2012      Published: 25 July 2013
ZTFLH:  Q78  
Cite this article:

TIAN Shuo, YAO Wen-bin, XU Chen. Construction and Biological Assay of Integrated Interferon Mutant IIFN/165S. China Biotechnology, 2013, 33(7): 8-12.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I7/8

[1] Chelbi-Alix M K, Wietzerbin J. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie. 2007, 89(6-7):713-718.
[2] Ozes O N, Reiter Z, Klein S, et al. A comparison of interferon-Con1 with natural recombinant interferons-alpha: antiviral, antiproliferative, and natural killer-inducing activities. J Interferon Res. 1992, 12(1):55-59.
[3] Blatt LM, Davis JM, Klein SB, et al. The biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res. 1996, 16(7):489-499.
[4] 刘耀波,杨轶,刘金毅等.新型α干扰素突变体及其制备方法.中国专利,CN1511849.2004-07-14. Liu Y P,Yang Y,Liu J Y.New type of inteferen-α mutant and preparing method.China,CN1511849.2004-07-14.
[5] 牛晓霞,刘金毅,杨轶,等. 集成干扰素突变体Ⅱ的分子构建、表达及提纯. 中国生物工程杂志, 2006,26(12):1-5. Niu X X, Liu J Y, Yang Y. Construction, expression and purification of recombinant consensus Interferon Mutant Ⅱ. China Biotechnology, 2006, 26(12):1-5.
[6] 中国药典委员会编.《中华人民共和国药典》.2005年版三部.北京:化学工业出版社,2005.附录56-57. Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia. 3rd ed. Beijing: Chemical Industrial Press, 2005. Appendix 56-57.
[7] 中国药典委员会编.《中华人民共和国药典》.2005年版三部.北京:化学工业出版社,2005.附录30. Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia.3rd ed. Beijing: Chemical Industrial Press, 2005. Appendix 30.
[8] 吕海, 金大地, 史占军,等. 在骨肉瘤细胞上筛选噬菌体-干扰素突变体及其临床意义. 解放军医学杂志, 2000,25(4):281-282. Lv H, Jin D D, Shi Z J, et al. Med J Chin PLA, 2000, 25(4):281-282.
[9] 胡荣,马学军,魏开坤,等. 噬菌体显示技术改造人干扰素α1c/86D的研究. 中华实验和临床病毒学杂志, 2002,16(2):132-135. Hu R, Ma X J, Wei K K, et al. Chin J Exp Clin Virol, 2002,16(2):132-135.
[10] Korn A P, Rose D R, Fish E N. Three-dimensional model of a human interferon-alpha consensus sequence. J Interferon Res, 1994, 14(1): 1-9.
[11] 郭杏莉,高琳,陈新,等. 生物网络比对的模型与算法. 软件学报,2010,21(9): 2089-2106 Guo X L, Gao L, Chen X, et al. Models and algorithms for alignment of biological networks. Journal of Software, 2010, 21(9): 2089-2106.
[12] Klein SB, Blatt LM, Taylor MW. Cell surface binding characteristics correlate with consensus type I interferon enhanced activity. J Interferon Cytokine Res. 1996, 16(1):1-6.
[1] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[2] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[3] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[6] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[7] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[8] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[9] Hao-yi MENG,Dan-yang LI,Zheng-yang SUN,Zhao-yong YANG,Zhi-fei ZHANG,Li-jie YUAN. Substrate-binding Site of Ubiquitous Mitochondrial Creatine Kinase from Homo sapiens[J]. China Biotechnology, 2018, 38(5): 24-32.
[10] LIU Li-ping, ZHANG Chun, YIN Shuang, WANG Qi, ZHANG Yao, YU Rong, LIU Yong-dong, SU Zhi-guo. Design, Preparation, Characterization and Preliminary Evaluation of an Albumin Binding Peptide-Doxorubicin Conjugate[J]. China Biotechnology, 2017, 37(4): 68-75.
[11] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[12] CHEN Wen-jie, WANG Jian-yang, YIN Ming, YIN Chang-chang. Progress on Anti-cancer Molecule Mechanism of Human Umbilical Cord Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(3): 78-82.
[13] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[14] WU Qin, HU Die, LI Xue-qing, YUAN Feng-jiao, LI Jian-fang, WU Min-chen. Site-directed Mutagenesis of Y13F to Improve the Thermotolerance of Mesophilic Xylanase from Aspergillus oryzae[J]. China Biotechnology, 2016, 36(12): 36-41.
[15] XIANG Mian, ZHU Jian-quan, YU Ji-hua, LI Yang-yang, LI Juan-juan, LIU Zu-bi, WANG Wan-jun, LIAO Hai, ZHOU Jia-yu. The Site-directed Mutation of Key Residues and the Analysis about Inhibitory Activity of Cassia obtusifolia Trypsin Inhibitor[J]. China Biotechnology, 2016, 36(10): 15-20.