Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (05): 97-106    DOI:
    
Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide
CHEN Wu1, LI Ding-jun2,3, DING Yan3, ZHANG Xu4, XIAO Qi-ming3, ZHOU Qing-ming1
1. Postdoctoral Research Station of Crops Science, College of Agriculture, Hunan Agricultural University (HNAU, Changsha 410128, China;
2. Hunan Radio and Television University, Changsha 410004, China;
3. College of Bio-safty Science and Technology, HNAU, Changsha 410128, China;
4. School of Pharmacy, Shanghai Jiaotong University, Minhang, Shanghai 200240, China
Download: HTML   PDF(494KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As part of the innate immunity system of host organism, antimicrobial peptides (AMPs) possess a wide spectrum of antimicrobial activity against eubacteria, fungi and eukaryotic parasites. AMPs are considered as one of potential alternates to the classical antibiotics in medicine, agriculture and food industry. The pathogenic microorganisms have correspondingly developed a defense system against the actions of AMPs during the co-evolution between the hosts and the pathogens. Recent discoveries on the resistance mechanism of pathogenic microorganism against AMPs, including sensing and gene regulation, modification of cell wall and/or plasma membrane, degradation of secreted proteases, as well as efflux pump by transporter proteins are discussed. Further, the perspectives of future research on AMP productions were proposed.



Key wordsAntimicrobial peptide      Pathogenic microorganism      Resistance mechanism      Sensing and gene regulation      Modification of cell wall and membrane      Protease      Efflux pumps     
Received: 13 January 2012      Published: 25 May 2012
ZTFLH:  Q939.9  
Cite this article:

CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide. China Biotechnology, 2012, 32(05): 97-106.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I05/97


[1] Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacolog Rev, 2003,55(1): 27-55.

[2] Mota-Meiral M, Morency H, Lavoie M C. In vivo activity of mutacin B-Ny266. J Antimicrob Chemother, 2005,56(5): 869-871.

[3] Nijnik A, Hancock R E W. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerging Health Threats J, 2009,2: e1.

[4] 黎定军, 陈武, 罗宽. 侧孢芽孢杆菌抑菌物质性质. 湖南农业大学学报(自然科学版), 2007, 33(4): 471-474. Li D J, Chen W, Luo K. On characteristics of the antibiotics secreted by Bacillus laterosporus strain 2-Q-9. J Hunan Agricultural University (Natural Sciences), 2007, 33(4): 471-474.

[5] Keymanesh K, Soltani S, Sardari S. Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol, 2009, 25(6): 933-944.

[6] Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett, 2007,270: 1-11.

[7] Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002,415(6870): 389-395.

[8] Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers, 2005, 80(6):717-735.

[9] Venugopal D, Klapper D, Srouji A H, et al. Novel antimicrobial peptides that exhibit activity against select agents and other drug resistant bacteria. Bioorg Med Chem, 2010,18(14):5137-5147.

[10] Oyston P C F, Fox M A, Richards S J. Novel peptide therapeutics for treatment of infections. J Med Microbiol, 2009,58(Pt 8):977-987.

[11] Hong R W, Shchepetov M, Weiser J N, et al. Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecroin A. Antimicrob Agents Chemother, 2003, 47:1-6.

[12] Bell G, Gouyon P H. Arming the enemy: the evolution of resistance to self-proteins. Microbiol, 2003, 149(Pt 6):1367-1375.

[13] Perron G G, Zasloff M, Bell Graham. Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci B, 2006, 273(1583):251-256.

[14] Bader M W, Sanowar S, Daley M E, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell, 2005,122(3):461-472.

[15] Guina T, Yi E C, Wang H, et al. A PhoP-Regulated Outer Membrane Protease of Salmonella enterica Serovar Typhimurium Promotes Resistance to Alpha-Helical Antimicrobial Peptides. Bacteriol, 2000, 182(14):4077-4086.

[16] Gunn J S. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol, 2008,16(6):284-290.

[17] Li M, Cha D J, Lai Y P, et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol, 2007a, 66(5):1136-1147.

[18] Li M, Lai Y P, Villaruz A E, et al. Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A, 2007b, 104(22): 9469-9474.

[19] Kox L F, Wosten M M, Groisman E A. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J, 2000,19(8): 1861-1872.

[20] Kato A, Groisman E A. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev, 2004, 18(18): 2302-2313.

[21] Pietiäinen M, Gardemeister M, Mecklin M, et al. Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems.Microbiol, 2005,151(5):1577-1592.

[22] Kovács M, Halfmann, Fedtke I, et al. A Functional dlt Operon, encoding proteins required for incorporation of D-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol, 2006, 188(16): 5759-5805.

[23] Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol, 2002, 10(4): 179-186.

[24] Abachin E, Poyart C, Pellegrini E, et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol, 2002, 43(1): 1-14.

[25] McBride S M, Sonenshein A L. The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology, 2011,157(Pt5):1457-1465.

[26] Abi Khattar Z, Rejasse A, Destoumieux-Garzón D, et al. The dlt operon of Bacillus cereus is required for resistance to cationic antimicrobial peptides and for virulence in insects. J Bacteriol, 2009, 191 (22) :7063-7073.

[27] Samant S, Hsu F F, Neyfakh A A, et al. The Bacillus anthracis protein MprF is required for synthesis of lysylphosphatidylalycerols and for resistance to cationic antimicrobial peptides. J Bacteriol, 2009, 191(4): 1311-1319.

[28] Ernst C M, Peschel A. Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phosphorlipids. Molecul Microbiol, 2011, 80(2): 290-299.

[29] Peschel A, Jack R W, Otto M et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. Exp Med, 2001,193(9):1067-1076.

[30] Ernst C M, Staubitz P, Mishra N N, et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog, 2009,5 (11): e1000660.

[31] Moon K, Gottesman S. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol, 2009, 74(6):1314-1330.

[32] Herrera C M, Hankins J V, Trent S. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol Microbiol, 2010, 76(6): 1444-1460.

[33] Zhou Z M, Ribeiro A A, Lin S H, et al. Lipid A Modifications in Polymyxin-resistant Salmonella typhimurium PMRA-dependent 4-amino-4-deoxy-l-arabinose, and phosphorethanolamine incorporation. J Biol Chem, 2001, 276(46):43111-43121.

[34] Raetz C R, Reynolds C M, Trent M S, et al. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem, 2007, 76: 295-329.

[35] Campos M A, Vargas M A, Regueiro V, et al. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun, 2004, 72(12): 7107-7114.

[36] Jin T, Bokarewa M, Tarkowski A. The role of urokinase in innate immunity against Staphylococcus aureus. Microbes Infect, 2005,7(9-10): 1170-1175.

[37] Llobet E, Tomás J M, Bengoechea J A. Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology, 2008, 154(Pt 12):3877-3886.

[38] Bader M W, Navarre W W, Shiau W, et al. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol, 2003,50(1):219-230.

[39] Sieprawska-Lupa M, Mydel P, Krawczyk K, et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother, 2004, 48(12): 4673-4679

[40] Nyberg P, Rasmussen M, Björck L. Alpha-2-Macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem, 2004,279(51): 52820-52823.

[41] Johansson L, Thulin P, Sendi P, et al. Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun, 2008,76(8):3399-3404.

[42] Karlsson C, Andersson M L, Collin M, et al. SufA——a novel subtilisinlike serine proteinase of Finegoldia magna. Microbiology, 2007, 153: 4208-4218.

[43] Schmidtchen A, Frick I M, Andersson E, et al. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol, 2002,46(1):157-168.

[44] Meiller T F, Hube B, Schild L, et al. A novel immune evasion strategy of Candida albicans: proteolytic cleavage of a salivary antimicrobial peptide. PLoS One, 2009,4(4):e5039.

[45] Vincents B, Onnerfjord P, Gruca M, et al. Down-regulation of human extracellular cysteine protease inhibitors by the secreted staphylococcal cysteine proteases, staphopain A and B. J Biol Chem, 2007,388(4): 437-446.

[46] Potempa J, Pike R N. Corruption of innate immunity by bacterial proteases. J Innate Immun, 2009,1(2):70-87.

[47] Lai Y, Villaruz A E, Li M, et al. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in Staphylococci. Mol Microbiol, 2007, 63(2):497 -506.

[48] Giuliani A, Rinaldi A C. Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches.Cell Mol Life Sci,2011,68(13):2255-2266.

[49] Davis J, Davies D. Origin and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010,74(3): 417-433.

[50] Putman M, van Veen H W, Konings W N. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev, 2000,64(4):672-693.

[51] Davidson A L, Dassa E, Orelle C, et al. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev, 2008,72(2): 317-364.

[52] Davidson A L, Maloney P C. ABC transporters: how small machines do a big job. Trends Microbiol, 2007, 15(10):448-455.

[53] Boumendjel A, Boutonnat J, Robert J. ABC transporters and multidrug resistance. New Jersey: John Wiley & Sons, 2009: 184-195.

[54] Seeger M A, van Veen H W. Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta, 2009(5), 1794: 725-737.

[55] Linton K J. Structure and function of ABC transporters. Physiol, 2007, 22(2): 122-130.

[56] Collins B, Curtis N, Cotter P D, et al. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to Nisin, Bacitracin, and various β-Lactam Antibiotics. Antimicrob Agents Chemother, 2010,54(10):4416-4423.

[57] Dintner S, Staron, Berchtold E, et al. Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria. Bacteriol, 2011, 193(15): 3851-3862.

[58] Vardy E, Arkin I T, Gottschalk K E, et al. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Prot Sci, 2004, 13(7):1832-1840.

[59] Law C J, Maloney P C, Wang D N. Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol, 2008, 62: 289-305.

[60] Fluman N, Bibi E. Bacterial multidrug transport through the lens of the major facilityator superfamily. Biochim Biophys Acta, 2009, 1794(5): 738-747.

[61] Saier M H, Beatty J T, Goffeau A, et al. The major facilitator superfamily. Mol Mcirobiol Biotechnol, 1999,1(2): 257-279.

[62] Brogden K A, Chris Mininon K F, Cornick N, et al. Virulence mechanisms of bacterial pathogens. Third Edition. Washington: American Society for Microbiology Press, 2007. 32-33.

[63] Nikaido H. Multidrug efflux pumps of gram-negative bacteria. Bacteriol, 1996, 178(20):5853-5859.

[64] Takatsuka Y, Chen C, Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pumps AcrB of Escherichia coli. Proc Nat Acad Sci U S A, 2010, 107(15): 6559-6565.

[65] Murakami S. Multidrug efflux transporter, AcrB-the pumping mechanism. Curr Opin Struct Biol, 2008, 18(4): 459-465.

[66] Misra R, Bavro V N. Assembly and transport mechanism of tripartite drug efflux systems. Biochim Biophys Acta, 2009, 1794(5): 817-825.

[67] Bay D C, Rommens K L, Turner R J. Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta, 2008, 1778(9): 1814-1838.

[68] Paulsen I T, Skurray R A, Tam R, et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol 1996, 19(6):1167-1175.

[69] Kolbusz M A, Horst R, Slotboom D J, et al. Orientation of small multidrug resistance transporter subunits in the membrane: correlateion with the positive-inside rule. Mol Biol, 2010,402: 127-138.

[70] Bay D, Turner R J. Diversity and evolution of the small multidrug resistance protein family. BMC Evolut Biol, 2009,9:140.

[71] Kuroda T, Tsuchiya. Multidrug efflux transporters in the MATE family. Biochim Biophys Acta, 2009,1794(5): 763-768.

[72] Morita Y, Kodama K, Shiota S, et al. NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother, 1998, 42(7): 1778-1782.

[73] Marquez B. Bacterial efflux systems and efflux pumps inhibitors. Biochimie, 2005, 87(12): 1137-1147.

[74] Pagès J M, Amaral L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta, 2009,1794(5):826-833.

[75] Pagès J M, Sandrine A F, Mahamoud A, et al. Efflux pumps of gram-negative bacteria, a new target for new molecules. Curr Top Med Chem, 2010,10(18): 1848-1857.

[76] Askoura M, Mottawea W, Abujamel T, et al. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med, 2011, 6:5870.

[77] Lubelski J, Konings W N, Driessen A J M. Distribution and physiology of ABC-type transporters contributing to multi-drug resistance in Bacteria. Microbiol Mol Biol Rev, 2007,71(3): 463-476.

[78] Ejim L, Farha M A, Falconer S B, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 2011, 7(6):348-350.

[79] Hammami R, Fliss I. Current trends in antimicrobial agent research: chemo- and bioinformatics approaches. Drug Discov Today, 2010, 15(13-14): 540-546.

[80] Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Bio Rev, 2004, 68(4): 669-685.

[81] Wong H L, Chattopadhyay N, Wu X Y, et al. Naontechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev, 2010, 62(4-5): 503-517.

[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[3] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[4] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[5] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[6] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[7] Jie ZENG. Advances in Study of Properties, Recombinant Expression and Applications of Lysyl Endopeptidase[J]. China Biotechnology, 2018, 38(3): 89-96.
[8] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[9] WEN Sai, LIU Huai-ran, HAN Xu, LI Tian, XING Xuan. Research Advances in the Design of Synthetic Antimicrobial Peptides with Enhanced Therapeutic Potentials[J]. China Biotechnology, 2016, 36(8): 89-98.
[10] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[11] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[12] CUI Hong-di, SHAO Zheng, DENG Li, SITU Yong-li, PENG Li-fei. Prokaryotic Expression, Purification and Activity Study of Kunitz Type Serine Protease Inhibitor IsKuI-1[J]. China Biotechnology, 2014, 34(12): 30-35.
[13] CHEN Jie-mei, ZHANG Can-hui, AI Tian. Study of the Antibacterial Peptides Produced by Bacillus amyloliquefaciens KN-BL-1 and Its Fermented Soybean Meal[J]. China Biotechnology, 2014, 34(10): 61-66.
[14] WU Ru-juan, ZHANG Ri-jun. The Progress of Hybrid Peptides on Design and Biological Activity[J]. China Biotechnology, 2013, 33(9): 94-100.
[15] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.