Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (05): 73-78    DOI:
    
Visualization of Mutation to Structure Homologous Modeling, Site-Directed Mutagenesis and Express D-Lactate Dehydrogenase from Aquifex aeolicus
TIAN Jin-hong1,2,3, LIU Qi2, ZHAN Li-ping2, ZHOU Ze-yang1,4
1. Institute of Sericulture and Systems Biology,Southwest University,Chongqing 400716,China;
2. College of Pharmaceutical Sciences,Southwest University,Chongqing 400716,China;
3. Chongqing Engineering Technology Research Centre of Veterinary Drugs,Chongqing 400716,China;
4. College of Life Science,Chongqing Normal University,Chongqing 400047,China
Download: HTML   PDF(991KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective to construct high yields recombinant E. coli strains producing phenyl lactic acid(PLA). Methods Analyze the X-ray structure of active site amino acid residues of D-LDH from Aquifex aeolicus, and compare it with mutant D-LDH of the homologous model. The optimized 3D structures of the mutant enzyme were elected by analyzing the space conformation of the amino acid residues in substrate binding domain of the mutant D-LDH. The genes of enzyme were site-directed mutated, cloned and expressed. Results F49A or Y297S mutants were finally elected for single-site mutation models, F49A/Y297S mutant was elected for double -site mutations, and three recombinant E. coli strains were proved for PLA production. Conclusion The method of mutation visualization is an effective method for construction of high yield gene engineering bacterium producing PLA.



Key wordsVisualization      Mutant      PLA D-LDH     
Received: 31 January 2012      Published: 25 May 2012
ZTFLH:  Q812  
Cite this article:

TIAN Jin-hong, LIU Qi, ZHAN Li-ping, ZHOU Ze-yang. Visualization of Mutation to Structure Homologous Modeling, Site-Directed Mutagenesis and Express D-Lactate Dehydrogenase from Aquifex aeolicus. China Biotechnology, 2012, 32(05): 73-78.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I05/73


[1] Hummel W, Schiitte H, Kula M R. Large scale production of D-lactate dehydrogenase for the stereospecific reduction of pyruvate and phenylpyruvate. Europen Journal of Applied Microbiology and Biotechnology, 1983, 18: 75-85.

[2] Antonyuk S V, Strange R W, Ellis M J, et al. Structure of D-lactate dehydrogenase from Aquifex aeolicus complexed with NAD+ and lactic acid (or pyruvate). Epub,2009, 65(12): 1209-1213.

[3] Nielsen M, Lundegaard C, Lund O. et al. CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles.Nucleic Acids Research, 2010, 38(10):576-581.

[4] Lund O, Nielsen M, Lundegaard C, et al. CPHmodels 2.0: X3M a Computer Program to Extract 3D Models. Abstract at the CASP5 conferenceA102, 2002,1-5:A102.

[5] Zheng L,Baumann U,Reymond J L.An eficient one-step Site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res, 2004,32: e15(1-5).

[6] 高川,韩维涛,宋云扬,等. 一种改进的快速PCR定点突变技术.生物技术通报, 2006, 3:99-103. Gap C, Han W T, Song Y Y, et al. A technique of improved rapid site-directed mutagenesis. Biotechnology Bulletin, 2006, 3:99-103.

[7] 周亚芹,张洪梅,董艳,等.环状定点诱变技术在单碱基定点诱变中的应用.现代医学,2009,37:321-324. Ahou Y Q, Zhang H M,Dong Y, et al. Site-directed mutagenesis of single base in vitro using circularsite-directed mutagenesis technology.Modern Medical Journal,2009,37:321-324.

[8] Binay B,Karaguler N G. Attempting to remove the substrate inhibition of L-lactate dehydroge-nase from Bacillus stearothermophilus by site-directed mutagenesis. Appl Biochem Biotechnol,2007,141(2-3):265-272.

[9] Liu H,Naismith J H.An eficient one-step site- directed deletion,insertion,single and muhiple- site plasmid mutagenesis protocol.BMC Biotecbnol,2008,8:91(1-10).

[10] Qi D,Schohhof K B.A one-step PCR-based method for rapid and eficient site-directed fragment deletion,insertion,and substitution mutagenesis. Virol Methods,2008,149:85-90.

[11] 张宝中,冉多良,刘大斌,等.利用DREAM设计和同源重组进行一步定点突变.中国生物工程杂志,2008,28(11):77-81. Zhang B Z,Ran D L,Liu D B, et al. One-step site-directed mutagenesis based on homologous recombination and DREAM design.China Biotechnology,2008,28(11):77-81.

[12] Zhou S D, Shanmugam K T, Ingram L O. Functional Replacement of the Escherichia coliD-(-)-Lactate Dehydrogenase Gene (ldhA) with the L-(+)-Lactate Dehydrogenase Gene (ldhL) from Pediococcus acidilactici.Appl.Environ.Microbio1,2003,69:2237- 2244.

[13] 贾江花,沐万孟,张涛,等.重组L-乳酸脱氢酶在大肠杆菌中的表达、纯化及活性研究.食品与发酵工业,2009,35(5):116-119. Jia J H,Mu W M,Zhang T, et al. Overexpession and purification of phenylactic acid producing lactate dehydrogenase gene (IdhL) in E. coli. Food Ferm Ind,2009,35(5):116-119.

[14] 李兴峰, 江波, 潘蓓蕾, 等.苯丙氨酸及苯丙酮酸对Lactobacillus sp. SK007合成苯乳酸的影响. 过程工程学报, 2007, 7(6): 1202-1206. Li X F, Jiang B, Pan B L, et al. Effects of phenylalanine and phenylpyruvic acid on biosynthesis of phenyllactic acid with Lactobacillus sp.Chin J Proc Eng, 2007, 7(6): 1202-1206.

[15] 沐万孟,周宏敏, 刘凤丽, 等.苯乳酸的快速检测研究.食品发酵工业,2008,34(11):139-142. Mu W M,Zhou H M,Liu F L, et al. Rapid determination of phenyllactic acid.Food Ferm Ind,2008,34(11):139-142.

[16] Xia Z X, Mathews F S, Molecular structure of flavocytochrome b2 at 24 resolution. Mol Biol, 1990, 212(4):837-863.

[17] Daff S, Manson F D C, Reid G A, et al. Strategic manipulation of the substrate specificity of Saccharomyces cerevisiae flavocytochrome b2. Biochem,1994,301: 829-834.

[18] Sinclair R, Reid G A,Chapman S K. Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity. Biochem, 1998, 333:117-120.

[19] Mowat C G, Wehenkel A, Green A J, et al. Altered substrate specificity in flavocytoch -rome b2: structural insights into the mechanism of L-lactate dehydrogenation. Biochem, 2004, 43(29):9519-9526.

[1] YANG Lin,WANG Liu-yue,LI Hui-mei,CHEN Hua-bo. Multi-site Specific Mutagenesis by Multi-fragment Overlap Extension PCR[J]. China Biotechnology, 2019, 39(8): 52-58.
[2] YANG Jian-wei, XUE Zheng-lian, ZHU Hao, YANG Meng, WANG Zhou. Study on the Mutagenic Effect of Phospholipase A1 Recombinant Plasmid by ARTP[J]. China Biotechnology, 2017, 37(6): 78-85.
[3] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[4] SUN Jian-feng, WANG Jian-xin. An Analysis Tool Based on E-index Method for Differentiating Complex Traits[J]. China Biotechnology, 2017, 37(2): 93-100.
[5] LI Xue-qing, YUAN Feng-jiau, CHENG Jian-qing, DONG Yun-hai, LI Jian-fang, WU Min-chen. Effect of Amino Acid H321 on the Enzymatic Properties of Hybrid β-Mannanase AuMan5Aloop[J]. China Biotechnology, 2017, 37(2): 48-53.
[6] CHEN Bing, KONG Ling-jiao, LEI Jin-xia, SHEN Lu, ZHANG Cai, WANG Jin-hua. BMP9 Induces Osteogenic/odontogenic Differentiation of ISCAP through the Smad Pathway[J]. China Biotechnology, 2016, 36(8): 16-22.
[7] WANG Xiao-lin, CAO Dong-yan, DONG Jin, TIAN Hui-qin, ZHU Ben-zhong. Progress in Researches of Ripening Related Mutants in Tomato Fruit[J]. China Biotechnology, 2016, 36(1): 95-100.
[8] ZHAO Hui-cun. Research and Development Trend of Biological Reactor Technology Based on Patent Visualization[J]. China Biotechnology, 2016, 36(1): 115-121.
[9] CUI Cheng-cheng, BI Yan-hong, WANG Ying-ming, LI Pan, YANG Si-da, HUANG Fen, ZENG Wei-kun, JING Shen-rong. Screening of ER3 Sequences Enhanced Protein Expression Activity and Its Functional Regions Identification[J]. China Biotechnology, 2015, 35(3): 18-24.
[10] LI Hui, XUE Wei, SUN Xue-song. Ferrichrome Binding Characteristics of Wild Type-and Mutant FtsBs in Streptococcus pyogenes[J]. China Biotechnology, 2015, 35(10): 32-38.
[11] GAO Guang-jun, KE Yue-hua, XU Jie, WANG Li-ping, ZHANG Zhen-fang, LI Zhuo-ling, GUO Ying-fei, WANG Lu-lu, WANG Yu-fei, XU Xing-ran, CHEN Ze-liang. Construction of B.ovis virB Mutant and Analysis the Intracellular Environmental Adaptations[J]. China Biotechnology, 2012, 32(11): 86-91.
[12] GAO Guang-jun, KE Yue-hua, XU Jie, WANG Li-ping, ZHANG Zhen-fang, LI Zhuo-ling, GUO Ying-fei, WANG Lu-lu, WANG Yu-fei, XU Xing-ran, CHEN Ze-liang. Construction of B.ovis virB Mutant and Analysis the Intracellular Environmental Adaptations[J]. China Biotechnology, 2012, 32(11): 86-91.
[13] TIAN Ya-rong, WANG Ying-hui, XU Mei-ai, LIN Jun, LIN Juan, YE Xiu-yun. Construction and Evaluation of a Directed Evolution Library of Catalase[J]. China Biotechnology, 2011, 31(9): 82-87.
[14] HUANG Wen, YANG Hong-jiang, QIN Hui-bin. Genetic Analysis of T-DNA Insertion Site and Characterization of One Aspergillus niger Mutant with Low Cellulase Activity[J]. China Biotechnology, 2011, 31(04): 60-64.
[15] SONG Xiu-peng, WU Bo, SHEN Pei-hong, JIANG Cheng-jian, TIAN Dan-dan, TANG Xian-lai. Location of Some Genes Related to One Carbon Metabolism in Methylobacterium sp. MB200 and Cloning of mtdA and mtdB Genes[J]. China Biotechnology, 2011, 31(02): 50-55.