Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (05): 31-35    DOI:
    
High Level Expression of Human ScFv against bFGF in Pichia pastoris
LV Wei-dong1, DU Chao-chao1, WANG Hong1, JIANG Hao-wu1, LAO Xue-jun2, SONG Qi-fang1, DENG Ning1
1. Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China;
2. Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
Download: HTML   PDF(508KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to high level express anti-bFGF ScFv antibody in Pichia pastoris, the gene of human anti-bFGF ScFv was subcloned, and constructed into expression vector pPICZαA. The constructed expression vector pPICZαA-ScFv was linearised and transformed to Pichia pastoris by electroporation. The transformants were induced by methanol, and the anti-bFGF ScFv was expressed. The expression products were purified by affinity chromatography of Ni-Seproase 6 FF and ion exchange chromatography of DEAE Sepharose FF. The results of SDS-PAGE and Western blotting showed that anti-bFGF ScFv was high level expressed successfully and the expression quantity was about 124mg/L. The target protein was purified from the expression products and the purity was more than 95 %. The results of ELISA showed that the purified recombinant ScFv could combine with bFGF specifically. The results of CCK8 showed that the purified recombinant ScFv could inhibit the proliferation of A549 cells in a dose-dependent manner in vitro. The results demonstrated that the anti-bFGF ScFv can be high level expressed in Pichia pastoris with good biological activity.



Key wordsbFGF      ScFv      Pichia pastoris      Lung cancer     
Received: 05 January 2012      Published: 25 May 2012
ZTFLH:  Q789  
Cite this article:

LV Wei-dong, DU Chao-chao, WANG Hong, JIANG Hao-wu, LAO Xue-jun, SONG Qi-fang, DENG Ning. High Level Expression of Human ScFv against bFGF in Pichia pastoris. China Biotechnology, 2012, 32(05): 31-35.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I05/31


[1] Hicklin D J, Ellis L M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Clin Oncol, 2005, 23(5): 1011-1027.

[2] Mason J C, Lidington E A, Ahmad S R, et al. bFGF and VEGF synergistically enhance endothelial cytoprotection via decay-accelerating factor induction. Am J Physiol Cell Physio, 2002, 282(3): 578-587.

[3] Nissen L J, Cao R H, Hedlund E M, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest, 2007, 117(10): 2766-2777.

[4] Sun X T, Ding Y T, Yan X G, et al.Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system. World J Gastroenterol, 2004, 10(17): 2524-2528.

[5] Horstmann M, Merseburger A S, Heyde E V, et al. Correlation of bFGF expression in renal cell cancer with clinical and histopathological features by tissue microarray analysis and measurement of serum levels. J Cancer Res Clin Oncol, 2005, 131 (11): 715-722.

[6] 李艳, 王新允, 刘婷, 等. 组织芯片技术研究肺癌及癌前病变bFGF的表达及意义. 中华肿瘤防治杂志, 2005, 12(9): 668-671. Li Y, Wang X Y, Liu T, et al. Expression and significance of bFGF in lung cancer detected by tissue microarray technology.Chinese Journal of Cancer Prevention and Treatment, 2005, 12(9): 668-671.

[7] 龚义平, 陶俊, 王宏, 等. 嵌合内含子对抗bFGF抗体基因在293T细胞中表达的影响. 中国生物工程杂志, 2010, 30(3): 9-14. Gong Y P, Tao J, Wang H, et al. Effect of Chimeric Intron on the Expression of Anti-bFGF Antibody Genes in 293T Cells.China Biotechnology, 2010, 30(3): 9-14.

[8] Tao J, Xiang J J, Li D, et al. Selection and characterization of a fully human neutralizing antibody to human fibroblast growth factor-2. Biochem Biophys Res Commun, 2010, 394(3): 767-773.

[9] Wayne A S, Kreitman R J, Findley H W, et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res, 2010, 16(6): 1894-1903.

[10] 陈耀祖, 张娟, 王旻. 用于抗体/抗体片段表达的系统及其高表达策略. 中国生物工程杂志, 2011, 31(9): 76-81. Chen Y Z, Zhang J, Wang M. The Expression System of Antibody and Antibody Fragment and Strategy of High-level Production. China Biotechnology, 2011, 31(9): 76-81.

[11] Damasceno L M, Pla I, Chang H J, et al. An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif, 2004, 37(1): 18-26.

[12] 夏钰弘, 杨国仪, 洪建刚, 等. IGFBP-3、bFGF、Ki-67蛋白在非小细胞肺癌组织中的表达及意义. 江苏医药, 2009, 35(1): 41-43. Xia Y H, Yang G Y, Hong J G, et al. Preclinical progress in targeted therapies for non-small cell lung cancer.Jiangsu Medical Journal, 2009, 35(1): 41-43.

[13] 谭晓红, 杨晓. 非小细胞肺癌靶向治疗的临床前研究进展. 生命科学, 2011, 23(4): 353-358. Tan X H, Yang X. Expression and significance of IGFBP-3,bFGF and Ki-67 in non-small cell lung cancer. Chinese Bulletin of Life Science, 2011, 23(4): 353-358.

[14] Li D, Wang H, Xiang J J, et al. Monoclonal antibodies targeting basic fibroblast growth factor inhibit the growth of B16 melanoma in vivo and in vitro. Oncol Rep, 2010, 24 (2): 457-463.

[1] Pan-hong ZHANG,Lian-lian LI,Xiu-mei ZHANG,Jia-jun CUI,Yin-jie JIANG. Advances in the Relationship Between microRNA and Chemotherapy Resistance of Lung Cancer[J]. China Biotechnology, 2019, 39(7): 79-84.
[2] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[3] Shi-jie LI,Yan-kun YANG,Meng LIU,Zhong-hu BAI,Jian JIN. Efficient Expression of SUMO Protease Ulp1 and Used to Express and Purified scFv by His-SUMO tag[J]. China Biotechnology, 2018, 38(3): 51-61.
[4] Rong ZHAO,Han-yu CHEN,Chun HUANG,Xiao-lian ZHANG,Qin PAN. Construction, Expression and Identification of Recombinant Fusion Protein Specifically Targeting B Cells and Binding to IL-10[J]. China Biotechnology, 2018, 38(2): 1-6.
[5] Qiao-li LANG,Lin YU,Qi-lin HE,Liang-peng GE,Xi YANG. Construction and Screening of a Phage Display Library of Single Chain Fv Antibody Efficiently from Mouse Immunized with Ovalbumin[J]. China Biotechnology, 2018, 38(11): 25-31.
[6] DAI Li-ting, WU Zhong-nan, HUANG Xiang, YANG Jie, ZENG Hui-lan, WANG Guo-cai, JIANG Jian-wei. Molecular Mechanism of Inducing GLC-82 Cells Apoptosis by Ethanol Extract from Wedelia prostrate(Hook.et Arn.) Hemsl[J]. China Biotechnology, 2017, 37(8): 1-7.
[7] WEN Jie, SONG Lin-lin, ZHANG Ying, WANG He, HE Jin-sheng, HONG Tao. Construction and Function of Stable Mammalian Cell Lines Expressing the Aβ-specific Single Chain Fragment Variants[J]. China Biotechnology, 2017, 37(2): 1-7.
[8] ZHANG Zhen-yang, YANG Yan-kun, ZHAN Chun-jun, LI Xiang, LIU Xiu-xia, BAI Zhong-hu. Pichia pastoris X-33 ΔGT2 Release the Glycerol Repression on AOX1 and Ef-ficiently Express Heterologous Proteins[J]. China Biotechnology, 2017, 37(1): 38-45.
[9] KANG Guo-kai, FENG Guo-dong, CAO Kun-lin, CHEN Zheng-jun, GE Xiang-yang. Optimization for High Production Fermentation of Lunasin from Recombinant Pichia pastoris[J]. China Biotechnology, 2016, 36(8): 73-79.
[10] LIU Ai-ping, LI Cheng, LIU Shu-liang, WANG Xiao-hong, CHEN Fu-sheng. Expression and Characterization of Anti-AFB1 scFv Expressed in Sf9 Cell[J]. China Biotechnology, 2016, 36(5): 40-45.
[11] SHI Hui-lin, SUN Jing-chun, ZHANG Rong-kai, GAO Da-qi, WANG Ze-jian, GUO Mei-jin, ZHOU Li-qin, ZHUANG Ying-ping. Application of the Electronic Nose on the Online Feedback Control of Methanol Concentration during Glucoamylase Fermentation Optimization by Pichia pastoris[J]. China Biotechnology, 2016, 36(3): 68-76.
[12] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[13] LI Meng-yue, WANG Teng-fei, WANG Jun-qing, ZHAO Yi-jin, CHENG Cheng, WANG Rui-ming. Expression of Trehalose Synthase Gene in Pichia pastoris[J]. China Biotechnology, 2016, 36(2): 73-80.
[14] NIU Chun-qing, GAO Xiang, LUO Jin-hua, LI Wei, LIU Qiu-ping, CHEN Yun, LIU Yan. Preparation of Recombinant Human Death Receptor 6 Ectodomain and Its Interaction with a Cleaved Amino-terminal Fragment of Human Amyloid Precursor Protein[J]. China Biotechnology, 2016, 36(2): 1-6.
[15] WU Jie, ZHANG Xiao-xue, YU He-shui, LI Wei, JIA Yu-ping, GUO Jiang-yu, ZHANG Li-juan, SONG Xin-bo. Research Progress of High Density Fermentation Process of Pichia pastoris[J]. China Biotechnology, 2016, 36(1): 108-114.