Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (04): 117-122    DOI:
    
The Strategy of Gene Coexpression in Escherichia coli
MA Rong1,2, XU Hao3, DING Rui1,2, AO Yong-hua4, ZHANG Li-jun1,2
1. College of Biotechnology, Shenyang Agricultural University, Shenyang 110161, China;
2. Liaoning Province Research Center of Plant Gene Engineering Technology, Shenyang 110161, China;
3. Jiangsu Huadong Purifying Equipment Co., Ltd, Yangzhou 225800, China;
4. College of Engineering, Shenyang Agricultural University, Shenyang 110161, China
Download: HTML   PDF(613KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Multi-gene expression in the same host by genetic engineering is an effective approach in studying the regulation of cell development regulation and in manipulating the cellular metabolism of E. coli. There are mainly three types of vectors to coexpress genes in E. coli, including vectors expressing multiple genes from a single transcription unit, vectors expressing multiple genes from multiple transcription units and vectors expressing a single gene.These types of vectors in their construction principles, characteristics, advantages and transformation strategies had been compared, with a major focus on the principle and methodology of using LIC linker in gene cloning with a multi-gene vector.



Key wordsGene      Coexpression      Multi-gene vector      Single-gene vector     
Received: 30 November 2010      Published: 25 April 2012
ZTFLH:  Q786  
Cite this article:

MA Rong, XU Hao, DING Rui, AO Yong-hua, ZHANG Li-jun. The Strategy of Gene Coexpression in Escherichia coli. China Biotechnology, 2012, 32(04): 117-122.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I04/117


[1] Charbonnier S, Gallego O. The social network of a cell: recent advances in interactome mapping. Biotechnology Annual Review, 2008, 14: 1-28.

[2] Romier C, Jelloul B. Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies. Acta Crystallographica Section D: Biological Crystallography, 2006, 62(10): 1232-1242.

[3] Kim K J, Kim H E. Two-promoter vector is highly efficient for overproduction of protein complexes. Protein Science, 2004, 13(6): 1698-1703.

[4] Perrakis A, Romier C. Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview. Methods in Molecular Biology-Clifton then Totowa, 2008, 426: 247.

[5] 楚素霞, 姚伦广, 邢延豪, 等. 多基因表达系统研究进展. 中国生物工程杂志, 2011, 31(6): 116-123. Chu S X, Yao L G, Xing Y H, et al. Advances on the study of multi-gene enpression system. China Biotechnology, 2011, 31(6): 116-123.

[6] Diebold M L, Fribourg S. Deciphering correct strategies for multiprotein complex assembly by co-expression: application to complexes as large as the histone octamer. Journal of Structural Biology, 2011, 2(1): 1-11.

[7] Lee H Y, Khosla C. Bioassay-guided evolution of glycosylated macrolide antibiotics in Escherichia coli. PLoS Biology, 2007, 5(2): e45.

[8] 何彰华, 王洋, 赵珺, 等. 一种多基因串联共表达载体的构建. 中国生物工程杂志, 2011, 31(1): 40-45. He Z H, Wang Y, Zhao J, et al. Construction of a vector suitable for the tandem coexpression of multiple genes by a single plasmid. China Biotechnology, 2011, 31(1): 40-45.

[9] Zeng J, Zhang L. Over-producing soluble protein complex and validating protein-protein interaction through a new bacterial co-expression system. Protein Expression and Purification, 2010, 69(1): 47-53.

[10] Kerrigan J J, Xie Q. Production of protein complexes via co-expression. Protein Expression and Purification, 2011, 75(1): 1-14.

[11] Yang W, Zhang L. A new method for protein coexpression in Escherichia coli using two incompatible plasmids. Protein Expression and Purification, 2001, 22(3): 472-478.

[12] Scheich C, Kummel D. Vectors for co-expression of an unrestricted number of proteins. Nucleic Acids Research, 2007, 35(6): e43-e43.

[13] Du R, Li S, Zhang X. A modified plasmid vector pCMV-3Tag-LIC for rapid, reliable, ligation-independent cloning of polymerase chain reaction products. Analytical Biochemistry, 2011, 408 (2): 357-359.

[14] Vernet E, Sauer J. Predictive mutagenesis of ligation-independent cloning (LIC) vectors for protein expression and site-specific chemical conjugation. Analytical Biochemistry, 2011, 414: 312-314.

[15] Busso D, Peleg Y. Expression of protein complexes using multiple E. coli protein co-expression systems: A benchmarking study. Journal of Structural Biology, 2011, 3(4): 1-12.

[16] Lutke-Eversloh T, Stephanopoulos G. L-Tyrosine production by deregulated strains of Escherichia coli. Applied Microbiology and Biotechnology, 2007, 75(1): 103-110.

[17] 周颖, 张青, 殷长传, 等. 分子伴侣SecB 基因与人淋巴毒素基因在大肠杆菌中的共表达. 生物工程学报, 1997, 13(4) : 433. Zhou Y, Zhang Q, Yin C C, et al. Coexpression of chaperion SecB and human lymphotoxin in Escherichia coli. Chinese Journal of Biotechnology, 1997, 13(4) : 433.

[18] Wang H H, Isaacs F J. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.

[19] Graslund S, Nordlund P. Protein production and purification. Nature Methods, 2008, 5(2): 135-146.

[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[4] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[5] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[6] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[7] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[8] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[9] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[10] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[11] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[12] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[13] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[14] LIANG Jin-gang,ZHANG Xu-dong,BI Yan-zhe,WANG Hao-qian,ZHANG Xiu-jie. Development Status and Prospect of Genetically Modified Insect-resistant Maize[J]. China Biotechnology, 2021, 41(6): 98-104.
[15] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.