Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (04): 53-59    DOI:
    
Study on the Restore Hexavalent Chromium Bacteria and Its Reductase
WEI Fei1,2, YANG Li-rong2, XUE Bao-guo1, WU Kun2
1. Institute of Plant Protection, Henan Academy of Agricultural Sciences, Crop Pest and Disease Control in Henan Province Key Laboratory, Zhengzhou 450002, China;
2. College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
Download: HTML   PDF(1405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Bacillus thuringiensis C-2 strain was isolated from activated sludge and it can tolerant 250mg/L Cr6+ and have better reducing capacity.The results showed that xylose, fructose, corn cake powder, malic acid, succinic acid, citric acid and ions Cu2+、Fe2+、Ca2+ had an active role for reduction and the inoculum size had influence for reduction. The conditions of 37℃ and pH9.0 were good for C-2 strain to reduce the Cr6+.The optimum pH and temperature of chromium reductase was pH7.0 and 37℃. The Co2+, Cu2+, Fe2+, DTT, NADH effectively promoted the reduction.



Key wordsC-2 strain      Hexavalent chromium      Reductase     
Received: 12 December 2011      Published: 25 April 2012
ZTFLH:  Q819  
Cite this article:

WEI Fei, YANG Li-rong, XUE Bao-guo, WU Kun. Study on the Restore Hexavalent Chromium Bacteria and Its Reductase. China Biotechnology, 2012, 32(04): 53-59.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I04/53


[1] Rachel Codd, Carolyn T Dillon, Aviva Levina, et al. Studies on the genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev, 2001,216:537-582.

[2] Gönül Dönmez, Nur Koçberber. Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media. Process Biochem, 2005, 40:2493-2498.

[3] Shen H, Wang Y T. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Applied and Environmental Microbiology, 1993,59:3771-3777.

[4] Thacker U, Parikh R, Shouche Y, et al. Reduction of chromate by cell-free extract of Brucella sp. isolated from Cr(VI) contaminated sites. Bioresource Technology, 2007,98 (8) : 1541- 1547.

[5] Thacker U, Parikh R, Shouche Y, et al. Hexavalent chromium reduction by Providencia sp. Process Biochemistry. 2006, 41(6) : 4332-4337.

[6] 肖伟,王磊,李倬锴.六价铬还原细菌Bacillus cereus S5.4还原剂机理及酶学性质研究.环境科学,2008(29):3,751-755. Xiao W, Wang L, Li Z K. Mechanisms and enzymatic characters of hexavalent chromium reduction by Bacillus cereus S5.4.Environmental Science,2008(29):751-755.

[7] 国家环境保护总局. 水和废水监测分析方法.第四版.北京:中国环境科学出版社,2002:12. State Environmental Protection Administration. Determination methods for examination of water and wastewater. Fourth Edition.Beijing: China Environmental Science Press,2002.12.

[8] McLean J, Beveridge T J, Phipps D. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenatecontaminated site, Environ. Microbiol, 2000(2):611-619.

[9] Zhiguo He, Fengling Gao, Tao Sha, et al. Isolation and characterization of a Cr(VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. Journal of Hazardous Materials.2009,163:869-873.

[10] Camargo F A O, Okeke B C, Bento F M, et al. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu 2+. Applied Microbiology Biotechnology. 2003,62 :569-573.

[11] Liu Y G, Xu W H, Zeng G M, et al, Experimental study on reduction Cr(VI) by Pseudomonas aeruginosa. J Environ Sci, 2004,16 (5): 797-801.

[12] Ligy Philip, Leela Iyengar, Venkobachar C. Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng,1998,124(12):1165-1170.

[13] Dhanpat Rai, Bruce M Sass, Dean A. Moore. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorganic Chemistry, 1987,26(3):345-349.

[14] 秦利玲,王天贵.用细菌解毒水溶液中六价铬的实验研究. 化学工程师, 2010,24(10):37-41. Qin L L, Wang T G. Detoxification of chromium(Ⅵ) from aqueous solution by bacteria. Chemical Engineer, 2010,24(10):37-41.

[15] Shakoori A R, Makhdoom M, Haq R U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology Biotechnology, 2000,53: 348-351.

[16] Fumiyoshi Abe, Takeshi Miura, Takahiko Nagahama, et al. Isolation of a highly copper-tolerant yeast, Cryptococcus sp.,from the Japan trench and the induction of superoxide dismutase activity by Cu2+. Biotecnology Letters, 2001,23:2027-2034.

[17] Lawrence H Bopp, Henry L Ehrlich. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Archives of Microbiology, 1988,150(4):422-430.

[18] Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 2004,70(2):873-882.

[19] Elangovan R, Abhipsa S, Rohit B, et al. Reduction of Cr(VI) by a Bacillus sp.Biotechnology Letters, 2006,28:247-252.

[20] Woo-Chul Bae, Han-Ki Lee, Young-Chool Choe, et al. Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. The Journal of Microbiology, 2005,2(43):21-27.

[1] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[2] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[3] Kun LIU,Shuang CUI,Fei-yun YANG,Xiao-dong HAN,Rui-gang WANG,Zi-yi ZHANG. Clone and Functional Identification of Cinnamoyl CoA Reductase Genes from Caragana intermedia[J]. China Biotechnology, 2018, 38(2): 18-29.
[4] Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism[J]. China Biotechnology, 2017, 37(12): 40-48.
[5] HU Gui-yuan, YANG Tao-wei, RAO Zhi-ming, LIU Mei, XU Mei-juan, ZHANG Xian. Improved Production of 2,3-Butanediol by Enhancing the Level of Intracellular NADH and Activity of Acetoin Reductase[J]. China Biotechnology, 2016, 36(6): 57-64.
[6] WU Xue-long, YANG Xiao-hui, WANG Jun-qing, WANG Rui-ming. Expression and Characteristics of Apis mellifera NADPH-cytochrome P450 Reductase Gene in Escherichia coli[J]. China Biotechnology, 2016, 36(12): 28-35.
[7] FAN Fei-fei, LI Jie-qin, ZHAN Qiu-wen, WANG Li-hua, LIU Yan-long. Research Progress of Cinnamoyl-CoA Reductase (CCR) Gene in Plants[J]. China Biotechnology, 2015, 35(12): 96-102.
[8] CHENG Lei, WANG Lei-lei, CHENG Bei-jiu, FAN Jun. Prokaryotic Expression and Functional Analysis of Maize BAS1(2-Cys peroxiredoxinA)[J]. China Biotechnology, 2010, 30(11): 24-29.
[9] . An aldose reductase inhibitor screening model constructed by transfection of pSNAV-AR into HEK293 cells[J]. China Biotechnology, 2009, 29(09): 0-0.
[10] . Genetic engineering reconstruction of Klebsiella pneumoniae producing 1,3-propanediol by the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme[J]. China Biotechnology, 2008, 28(11): 53-57.
[11] fanying Li . Research progress on biosynthetic pathway of terpenoids containing ginsenoside and the HMGR[J]. China Biotechnology, 2008, 28(10): 130-135.
[12] . Cloning and characterization of 5′flanking region of nitrate reductase gene derived from Dunaliella Salina[J]. China Biotechnology, 2006, 26(11): 1-7.
[13] . Screening of Klebsiella pneumoniae Mutation for the Production of 1,3-Propanediol[J]. China Biotechnology, 2006, 26(06): 59-64.