Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (3): 99-104    DOI:
    
Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content
WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun
Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML   PDF(598KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel cultivation strategy, "heterotrophy - stress" two-step cultivation was developed to solve the problem of asynchronism between biomass and lipid production in Chlorella protothecoides research. The C. protothecoides was first cultivated in optimized heterotrophic medium to achieve high cell density with low lipid content. Then, the algal cells were washed, condensed and transferred to stress medium without nitrogen source in order to accumulate high lipid content. With this strategy, the C. protothecoides biomass in 500ml flask achieved 5.32 g/L dry-weight which was close to the level of traditional heterotrophic cultivation mode, but the lipid content increased from 15.40% to 34.81%, and the algal polysaccharide content of the residue after lipid extraction increased from 9.57% to 18.06%. Furthermore, a 3L fermenter experiment showed a consistent pattern. In nitrogen rich medium, the biomass reached 14.1 g/L dry-weight, lipid content reached 17.16%, and the algal polysaccharide content was 10.16%, while in " heterotrophy - stress" two-step cultivation, the biomass attained 13.2 g/L dry-weight, the lipid attained 40.15%, and the algal polysaccharide content was 24.74%. Therefore, this study indicates that the proposed strategy may provide an effective approach for microalgal biomass production with high lipid content.



Key wordsChlorella protothecoides      Biomass      Lipid content      Two step cultivation     
Received: 05 November 2012      Published: 25 March 2013
ZTFLH:  Q819  
Cite this article:

WANG Gui-lin, GUI Xiao-hua, DENG Wei, ZHAO Zhi-liang, YAO Jie, YAN Yun-jun. Two Step Cultivation Mode with “Heterotrophy-stress” for Chlorella Protothecoides Biomass and Lipid Content. China Biotechnology, 2013, 33(3): 99-104.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I3/99

[1] Wijffels R H, Barbosa M J. An outlook on microalgal biofuels. Science, 2010, 329(5993):796-799.
[2] 夏金兰,万民熙,王润民,等. 微藻生物柴油的现状与进展. 中国生物工程杂志, 2009(7): 118-126. Xia J L, Wan M X, Wang Y M, et al. Research progress on biodiesel producing microalgae cultivation. China Biotechnology, 2009(7): 118-126.
[3] Yan D, Lu Y, Chen Y, et al. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol, 2011, 102(11): 6487-6493.
[4] Xiong W, Li X F, Xiang J Y, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol, 2008, 78(1): 29-36.
[5] Doucha J, Lívansky K. Production of high-density Chlorella cult ure grown in fer menters. J Appl Phycol, 2012(24): 35-42.
[6] Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol, 2006, 126(4): 499-507.
[7] Gao C F, Zhai Y, Ding Y, et al. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energ, 2010, 87(3): 756-761.
[8] Fan J, Huang J, Li Y, et al. Sequential heterotrophy–dilution–photoinduction cultivation for efficient microalgal biomass and lipid production. Bioresour Technol, 2012, 112: 206-211.
[9] Oh S H, Kwon M C, Choi W Y, et al. Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. J Biosci Bioeng, 2010, 110(2): 194-200.
[10] Li Y T, Han D X, Sommerfeld M, et al. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol, 2011, 102(1): 123-129.
[11] 王金娜,严小军,周成旭,等. 产油微藻的筛选及中性脂动态积累过程的检测. 生物物理学报, 2010(6): 472-480. Wang J N, Yan X J, Zhou C X, et al. Screening of oil-producing microalgae and detecting dynamics of neutral lipid accumulation. Chinese Journal of Biophysics, 2010(6): 472-480.
[12] Elsey D, Jameson D, Raleigh B, et al. Fluorescent measurement of microalgal neutral lipids. J Microbiol Method, 2007, 68(3): 639-642.
[13] 刘四光,李文权,邓永智. 海洋微藻多糖微波提取法研究. 海洋通报, 2007(4): 105-110. Liu S G, Li W Q, Deng Y Z. Study on the microwave extraction of polysaccharides in marinealga. Marine Science Bulletin, 2007(4): 105-110.
[14] 周妍,王凌,孙利芹,等. 5种海洋微藻多糖体外免疫调节活性的筛选. 海洋通报, 2010(2): 194-198. Zhou Y, Wang L, Sun L Q, et al. Immunomodulation activities of polysaccharides in vitro from five microalgae. Marine Science Bulletin, 2010(2): 194-198.
[15] Converti A, Alessandro A C, Erika Y O, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochlorapsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensification, 2009(48): 1146-1151.
[16] Illman A M, Scragg A H, Shales S W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol, 2000, 27(8): 631-635.
[17] Evans Ct S A R. C. Regulation of citrateefflux from mitochondria of oleaginous and non-oleaginous yeasts by adenine nucleotides. Eur J Biochem, 1983, 132(3): 609-615.
[18] Botham Pa R C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous microorganisms. Gen Microbiol, 1979(114): 361-375.
[19] Orús M I M E M F. Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresour Technol, 1991, 38(23): 179-184.
[20] Meng X, Yang J, Xu X, et al. Biodiesel production from oleaginous microorganisms. Renew Energ, 2009, 34(1): 1-5.

[1] Zhi-jin WEI,Xiao LI,Hao-nan WANG,Yong-hao YIN,Li-jun XI,Bao-sheng GE. Enhanced Biomass Production and Lipid Accumulation by Co-cultivation of Chlorella vulgaris with Azotobacter Mesorhizobium sp.[J]. China Biotechnology, 2019, 39(7): 56-64.
[2] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[3] CHE Rao-qiong, HUANG Li, WANG Lin, ZHAO Peng, LI Tao, YU Xu-ya. Effects of Glucose on Cell Growth and Lipid Synthesis of Monoraphidium sp. FXY-10 Under Mixotrophic and Heterotrophic Cultivations[J]. China Biotechnology, 2015, 35(11): 46-51.
[4] YANG Kai, ZHAN Jing-ming, GAO Fen-fang, WU Bao-li, SU Li-xia, ZHOU Wen-ming, XUE Xiang-ming, HAO Jie, ZHAO Yang. Research of Chlorella on the Production of Biodiesel[J]. China Biotechnology, 2015, 35(11): 99-104.
[5] LI Xie-kun, ZHOU Wei-zheng, GUO Ying, WU Hao, XU Jing-liang, YUAN Zhen-hong. Research Progress on Bioethanol Production with Microalgae as Feedstocks[J]. China Biotechnology, 2014, 34(5): 92-99.
[6] LI Lan, WANG Ze-Jian, JIN Yong, SUN Wen-hua, ZHUANG Ying-ping, ZHANG Si-liang. Study on On-line Capacitance Measurement to Evaluate the Viable Biomass During the Fermentation of Pichia[J]. China Biotechnology, 2014, 34(3): 91-95.
[7] LIU Ai-jun, SHI Shou-kun, LI Lan, WANG Ping, WANG Wei, JIA Jun-qiao, WANG Ze-jian, LI Hai-dong, ZHUANG Ying-ping, ZHANG Si-liang. Studies on the Measurement of Viable Biomass in the Optimization of Rifamycins SV Fermentation Process[J]. China Biotechnology, 2014, 34(10): 73-78.
[8] LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation[J]. China Biotechnology, 2013, 33(12): 114-120.
[9] YANG Qiu-ling, JI Jing, WANG Gang, WU Wei-dan, HUO Pei. Traits Analysis of Maize with the Psy and Lycb[J]. China Biotechnology, 2012, 32(12): 52-58.
[10] HU Wen-jun, LUO Wei, LI Han-guang, GU Qiu-ya, YU Xiao-bin. Study on Screening and Identification of Oleaginous Microalgae and Its Oil-producing Charateristic[J]. China Biotechnology, 2012, 32(12): 66-72.
[11] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[12] XU Yong, WANG Xun, ZHU Jun-jun, YONG Qiang, YU Shi-yuan. A New Way for Bioconversion of Xylose in High Efficiency[J]. China Biotechnology, 2012, 32(05): 113-119.
[13] GUO Yong-an, TENG Ya-qun, ZHU Ouhaodi, DAU Yi-chen, ZHA Jing-jing, ZHU Xu, ZENG Xiao, XING Xiao-xue, Mitchell Bieniek, Garrett Flack, LV Ji-hua. Study on the Ability of Butanol Production of Different Bacteria with the Fermentable Sugar[J]. China Biotechnology, 2012, 32(03): 91-99.
[14] LI Tao, LI Ai-fen, SANG Min, WU Hong, YIN Shun-ji, ZHANG Cheng-wu. Screening Oleaginous Microalgae and Evaluation of the Oil-producing Charateristic[J]. China Biotechnology, 2011, 31(04): 98-105.
[15] ZHAO Gen-gui, XUE Xiao-chun, YANG Su-ping. Rapid Measurement of Growth of Bacteria Grown in the Precipitate-containing Liquid Medium[J]. China Biotechnology, 2011, 31(02): 91-94.