Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (12): 109-114    DOI:
    
Molecular Expression and Regulation of MicroRNA
DONG Yuan-yuan1,2, LI Hai-yan2, LI Xiao-kun1,2, YANG Shu-lin1
1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
Download: HTML   PDF(643KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

MicroRNA(miRNA) is a class of small RNAs with the length of 19~24nt, which usually regulated the degradation or inhibiting translation of target genes at the post-transcriptional level. MiRNA molecules are highly conserved in evolution, a growing number of miRNA molecules that involved in eukaryotic growth and development, physical activity, cell proliferation, differentiation, apoptosis, complex disease control and other functions have been found. The important prospects of miRNAs in the regulation of gene expression through introducing origins, synthesis, modification, characteristics of cells, and eukaryotic cells regulation of miRNAs with the latest developments and research methods are provided.



Key wordsmiRNA expression      Post-transcriptional regulation      Gene regulation     
Received: 01 August 2011      Published: 25 December 2011
ZTFLH:  Q789  
Cite this article:

DONG Yuan-yuan, LI Hai-yan, LI Xiao-kun, YANG Shu-lin. Molecular Expression and Regulation of MicroRNA. China Biotechnology, 2011, 31(12): 109-114.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I12/109


[1] Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev, 2006, 20(7): 759-771.

[2] Matzke M A, Matzke A J. Planting the seeds of a new paradigm. PLoS Biol, 2004 2(5): E133.

[3] Jaubert M, Bhattacharjee S, Mello A F, et al. ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiol, 2011, 156(3): 1556-1564.

[4] Kim V N, Nam J W. Genomics of microRNA. Trends Genet, 2006, 22(3): 165-173.

[5] Li Y, Li C, Xia J, et al. Domestication of transposable elements into MicroRNA genes in plants. PLoS One, 2011, 6(5): e19212.

[6] Piriyapongsa J, Jordan I K. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5): 814-821.

[7] Allen E, Xie Z, Gustafson A M, et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet, 2004, 36(12): 1282-1290.

[8] Chapman E J, Carrington J C. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet, 2007, 8(11): 884-896.

[9] Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4): 669-687.

[10] Shabalina S A, Koonin E V. Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol, 2008, 23(10): 578-587.

[11] Vazquez F, Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 2006, 11(9): 460-468.

[12] Kim Y K, Heo I, Kim V N. Modifications of small RNAs and their associated proteins. Cell, 2010, 143(5): 703-709.

[13] Ibrahim F, Rymarquis L A, Kim E J, et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A, 2010, 107(8): 3906-3911.

[14] Katoh T, Sakaguchi Y, Miyauchi K, et al. Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev, 2009, 23(4): 433-438.

[15] Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol, 2005, 15(16): 1501-1507.

[16] Chitwood D H, Timmermans M C. Small RNAs are on the move. Nature, 2010, 467(7314): 415-419.

[17] Dunoyer P, Schott G, Himber C, et al. Small RNA duplexes function as mobile silencing signals between plant cells. Science, 2010, 328(5980): 912-916.

[18] Chitwood D H, Nogueira F T, Howell M D, et al. Pattern formation via small RNA mobility. Genes Dev, 2009, 23(5): 549-554.

[19] Carlsbecker A, Lee J Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature, 2010, 465(7296): 316-321.

[20] Ng D W, Zhang C, Miller M, et al. cis-and trans-regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell, 2011, 23(5): 1729-1740.

[21] Chavali P L, Funa K, Chavali S. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions. Nucleic Acids Res, 2011, 39(16): 6908-6918.

[22] Oh T J, Wartell R M, Cairney J, et al. Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol, 2008, 179(1): 67-80.

[23] Yang X, Zhang H, Li L. Global analysis of gene-level microRNA expression in Arabidopsis using deep sequencing data. Genomics, 2011, 98(1): 40-46.

[24] Luo Q J, Samanta M P, Koksal F, et al. Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet, 2009, 5(4): e1000457.

[25] Khan A A, Betel D, Miller M L, et al. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol, 2009, 27(6): 549-555.

[26] Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev,2009, 19(4): 374-378.

[27] Alonso-Peral M M, Li J, Li Y, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol, 2010, 154(2): 757-771.

[28] Wan P, Wu J, Zhou Y, et al. Computational analysis of drought stress-associated miRNAs and miRNA co-regulation network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011, 9(1-2): 37-44.

[29] Jian X, Zhang L, Li G, et al. Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics, 2010, 95(1): 47-55.

[30] Wang C Y, Chen Y Q, Liu Q. Sculpting the meristem: The roles of miRNAs in plant stem cells. Biochem Biophys Res Commun, 2011, 409(3): 363-366.

[31] Wang J W, Schwab R, Czech B, et al. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20(5): 1231-1243.

[32] Ascencio-Ibanez J T, Sozzani R, Lee T J, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol, 2008, 148(1): 436-454.

[33] Zhao M, Ding H, Zhu J K, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol, 2011, 190(4): 906-915.

[34] Zhang X, Zou Z, Gong P, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett, 2011, 33(2): 403-409.

[35] Grigorova B, Mara C, Hollender C, et al. LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers. Development, 2011, 138(12): 2451-2456.

[36] Jung J H, Seo P J, Kang S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol Biol, 2011, 76(1-2): 35-45.

[37] Liu D, Song Y, Chen Z, et al. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant, 2009, 136(2): 223-236.

[38] Kantar M, Lucas S J, Budak H. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011, 233(3): 471-484.

[39] Kim W, Ahn H J, Chiou T J, et al. The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells, 2011, 32(1): 83-88.

[40] Liffers S T, Munding J B, Vogt M, et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab Invest, 2011, (in press).

[41] Acunzo M, Visone R, Romano G, et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2011, (in press).

[42] Franco-Zorrilla J M, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39(8): 1033-1037.

[43] Loya C M, Lu C S, Van Vactor D, et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods, 2009, 6(12): 897-903.

[1] Hao QIU,Ming-shu WANG,An-chun CHENG. γPNA——A New Type of High Efficient Peptide Nucleic Acid[J]. China Biotechnology, 2018, 38(2): 75-81.
[2] WANG Jia-wen, FENG Jing-xian, LIN Jun-sheng, DIAO Yong. The Artificial Aptazyme Based Riboswitch[J]. China Biotechnology, 2014, 34(2): 59-64.
[3] CHEN Wu, LI Ding-jun, DING Yan, ZHANG Xu, XIAO Qi-ming, ZHOU Qing-ming. Progress in the Resistance Mechanisms of Pathogenic Microorganism against Antimicrobial Peptide[J]. China Biotechnology, 2012, 32(05): 97-106.
[4] SHU Xian-Can, SONG Feng-Bin. Advances of Study on Arbuscular Mycorrhizal Symbiotic Phosphate Transporter in Plants[J]. China Biotechnology, 2009, 29(12): 108-113.
[5] . Construction and expression in vitro of RU486-inducible regulatory vector[J]. China Biotechnology, 2007, 27(6): 1-5.