Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2011, Vol. 31 Issue (12): 22-26    DOI:
    
Effect of purA Gene Overexpression on Adenosine Accumulation
ZHANG Yang, DU Shan-shan, XIE Xi-xan, XU Qing-yang, CHEN Ning
School of Biological Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
Download: HTML   PDF(628KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Effect of purA gene overexpression on adenosine accumulation was studied in industrial strain Bacillus subtilis XGL(Xan-+Deam-+8-AGr+SGr). PurA gene was cloned from XGL's chromosome by PCR and ligated into the shuttle vector pBE43 which contained P43 promoter. Recombinant plasmid pBE43∷purA was transformed into XGL by electroporation. Reverse transcription PCR and quantitative PCR were used for measuring the transcription of purA. Fermentation parameters were determined in 5 L fermenter. Expression analysis showed that the purA in XGL-SY expressed as 9 times many as that in XGL. Cell growth was dragged a little. However, the production of adenosine was 10.8% higher than before. In conclusion, the overexpression of purA can promote further accumulation of adenosine, which made a foundation to further genetic engineering strain construction.



Key wordsAdenosine      Adenylosuccinate synthetase      Bacillus subtilis     
Received: 20 September 2011      Published: 25 December 2011
ZTFLH:  Q789  
Fund:  

3

Corresponding Authors: 3     E-mail: ningch@tust.edu.cn
Cite this article:

ZHANG Yang, DU Shan-shan, XIE Xi-xan, XU Qing-yang, CHEN Ning. Effect of purA Gene Overexpression on Adenosine Accumulation. China Biotechnology, 2011, 31(12): 22-26.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2011/V31/I12/22


[1] Linden J. Adenosine in tissue protection and tissue regeneration. Molecular Pharmacology, 2007, 67(5): 1385-1387.

[2] Lu Q, Newton J, Harrington E O, et al. Adenosine enhances endothelial barrier function via alteration of small gtpases. American Journal of Respiratory and Critical Care Medicine, 2011, 183: A1949.

[3] 张天瑞,刘淑云,徐庆阳. 现代食品科技,2006,23(3):17-19. Zhang T R, Liu S Y, Xu Q Y. Modern Food Science and Technology, 2006, 23(3): 17-19.

[4] Asahara T, Mori Y, Natalia P, et al. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Applied Genetics and Molecular Biotechnology, 2010, 87: 2195-2207.

[5] Asakura Y, Kimura E, Usuda Y, et al. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appled and Environmental Microbiology, 2007, 74(4): 1308-1319.

[6] 张雪,闫继爱,于雷,等. 微生物学报,2009,49(5):591-596. Zhang X, Yan J A, Yu L, et al. Microbiology, 2009, 49(5): 591-596.

[7] 闫继爱,张雪,张芸,等. 中国生物工程杂志,2010,30(3):79-84. Yan J A, Zhang X, Zhang Y, et al. China Biotechnology, 2010, 30(3): 79-84.

[8] Sangita C, Joseph K, Diana R, et al. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. Journal of Bacteriology, 2003, 185(14): 4087-4098.

[9] Lobanov K V, Korol'kova N V, Eremina S Y, et al. Mutation analysis of the purine operon leader region in Bacillus subtilis. Russian Journal of Genetics, 2011, 47(7): 785-793.

[10] Kim J H, Hwang B Y, Roh J, et al. Comparison of PaprE, PamyE, and PP43 promoter strength for β-galactosidase and staphylokinase expression in Bacillus subtilis. Biotechnology and Bioprocess Engineering, 2008, 13(3): 313-318.

[11] Turgeon N, Laflamme C, Hob J, et al. Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. Journal of Microbiological Methods, 2006,3(67): 543-548.

[12] Yu W B, Gao S H, Ye B C, et al. Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation. Plos One, 2011, 5(6): e20092.

[13] Duan Y X, Chen T, Zhao X M, et al. Enhanced riboflavin production by expressing heterologous riboflavin operon from B. cereus ATCC14579 in Bacillus subtilis. Biotechnology and Bioengineering, 2010, 18(1): 129-136.

[14] 周世奇.强启动子枯草芽孢杆菌核黄素操纵子整合型载体的构建并在枯草芽孢杆菌中的表达.天津:天津大学,化工学院,2005. Zhou S Q. Integration plasmid construction of strong promotor riboflavin operon and Expression in Bacillus subtilis. Tianjin: Tianjin University, School of Chemical Engineering and Technology, 2005.

[15] Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997, 390(20): 249-256.

[16] Rappu P, Shin B S, Zalkin H, et al. Role for a highly conserved protein of unknown function in regulation of Bacillus subtilis purA by the purine repressor. Journal of Bacteriology, 1999, 181(12): 3810-3815.

[1] LI Zhi-gang,GU Yang,TAN Hai,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Fermentation Production by Aminophylline and Citrate Coupling Addition[J]. China Biotechnology, 2021, 41(7): 50-57.
[2] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.
[3] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[4] CHEN Bao-feng,LI Zhi-gang,ZHANG Zhong-hua,CHANG Jing-ling. Enhanced Cyclic Adenosine Monophosphate Production by Coupling Addition of Low-Polyphosphate and Hypoxanthine[J]. China Biotechnology, 2019, 39(8): 25-31.
[5] ZHAO Yi-jin, WANG Teng-fei, WANG Jun-qing, WANG Rui-ming. Surface Display of Tres Using CotC as a Molecular Vector on Bacillus subtilis Spores[J]. China Biotechnology, 2017, 37(1): 71-80.
[6] HU Gui-yuan, YANG Tao-wei, RAO Zhi-ming, LIU Mei, XU Mei-juan, ZHANG Xian. Improved Production of 2,3-Butanediol by Enhancing the Level of Intracellular NADH and Activity of Acetoin Reductase[J]. China Biotechnology, 2016, 36(6): 57-64.
[7] HAO Wen-bo, JI Fang-ling, WANG Jing-yun, ZHANG Yue, WANG Tian-qi, CHE Wen-shi, BAO Yong-ming. Effects of D194G Mutant on meso-2, 3-Butanediol Dehydrogenase Catalytic Properties[J]. China Biotechnology, 2016, 36(1): 47-54.
[8] XIE Zhi-dan, FAN Wen, JIA Dong-cheng, YANG Na, XIA Zheng-yuan, QIAO Min. Recent Developments in Spore Surface Display of Bacillus subtilis[J]. China Biotechnology, 2014, 34(8): 105-111.
[9] LIU Hui-li, LI Yuan-yuan, JU Rui-cheng, ZHAO Hong-tao, YANG Qing. Isolation, Identification and Fermentation Optimization of Antagonistic Bacillus subtilis KC-5[J]. China Biotechnology, 2014, 34(3): 96-102.
[10] HUANG Xiang-feng, ZHAN Peng-ju, PENG Kai-ming, LIU Jia, LU Li-jun. Study on the Influence of Iron Dosage in the Medium on Fermentation of Lipopeptide Produced by Bacillus subtilis CICC 23659[J]. China Biotechnology, 2013, 33(6): 52-61.
[11] WU Hai-li, ZHANG San-jun, DU Bing, QIAN Min, REN Hua. Expression, Purification and Biological Activity of Arginine Mutants of Bacillus subtilis RecQ Helicase[J]. China Biotechnology, 2013, 33(12): 29-34.
[12] LIU Jin-xia, Ll Na, DU Wen-jing, WU Jian-rong, LI Jin, DING Pin, SHEN Si-yuan, ZHANG Jian-jun. The Research of the Highly Effective Biocontrol Emulsion with Bacillus subtilis[J]. China Biotechnology, 2011, 31(9): 69-75.
[13] LI Xiao-jing, DUAN Yun-xia. Application of Metabolic Engineering in Riboflavin Production[J]. China Biotechnology, 2011, 31(02): 130-138.