Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (06): 7-15    DOI: 10.13523/j.cb.20140602
    
Expression of Tat-MANF Fusion Protein and Its Bioactivity Analysis
LI Chen1, GU Hua1, GUO Jia2, SUN Hui1, HUANG Jing-wei1, JIANG Ming2, JIN Ling-jing3, FANG Jian-min1,2
1. Tongji University, Shanghai 200092, China;
2. Tongji University Suzhou Institute, Suzhou 215101, China;
3. Shanghai Tongji Hospital, Shanghai 200065, China
Download: HTML   PDF(1398KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To express Tat-MANF fusion protein and evaluate its biological activities. Methods: Tat-MANF fusion gene is constructed by PCR method to add the TAT sequence in the N-terminus and a His tag in the C-terminus of the MANF cDNA respectively. The Tat-MANF cDNA is inserted into the pET22b+ expression plasmid and prokaryotic expression system (BL21) is used to express the fusion protein. After purification, Tat-MANF protein is detected by SDS-PAGE and Western blot analyses. In order to evaluate biological activities of Tat-MANF, 6-Hydroxydopamine (6-OHDA) was used to induce apoptosis in human dopaminergic neuroblastoma cells. Tat-MANF is added to the cell-culture medium and the neuroprotection effect is detected by flow cytometry after 24h. B-endo3 cells were used as an in vitro blood-brain barrier model, in which B-endo3 cells are incubated with the FITC-labeled Tat-MANF and examined under microscopy after 4 hours. Results: Tat-MANF-His recombinant protein is successfully expressed in prokaryotic expression system. Western blot revealed that Tat-MANF-His recombinant protein can be detected by both anti-MANF and anti-His antibodies. Flow cytometry demonstrates that Tat-MANF significantly inhibit 6-OHDA-induced neuronal cell apoptosis similar to MANF. After 4 hours co-incubation with Tat-MANF-FITC, intracellular fluorescent signal is observed in the B-endo3 cells, indicating that Tat-MANF is able to cross cell membrane of brain vascular endothelial cells, a key component of BBB(blood-brain barrier). Conclusion: The recombinant Tat-MANF fusion protein is neuroprotective and may be able to cross blood-brain barrier, which may provide a novel therapy to Parkinson's Disease.



Key wordsMesencephalic astrocyte-derived neurotrophic factor      Parkinson’s disease transmembrane      protein      Fusion protein     
Received: 27 April 2014      Published: 25 June 2014
ZTFLH:  Q786  
Cite this article:

LI Chen, GU Hua, GUO Jia, SUN Hui, HUANG Jing-wei, JIANG Ming, JIN Ling-jing, FANG Jian-min. Expression of Tat-MANF Fusion Protein and Its Bioactivity Analysis. China Biotechnology, 2014, 34(06): 7-15.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140602     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I06/7


[1] Lew M. Overview of Parkinson's disease. Pharmacotherapy, 2007, 27(12):155-160.

[2] Schapira A H. Future directions in the treatment of parkinson's disease. Movement Disord, 2007, 22: 385-391.

[3] Willismd L R, Varon S, Peterson G M. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc Natl Acad Sci USA, 1986, 83: 9231-9235.

[4] Carl Rosenblad, Kirik D, Devaux B. Protection and regeneration of nigral dopaminergic neurons by neurturin or gdnf in a partial lesion model of parkinson's disease after administration into the striatum or the lateral ventricle. Eur J Neurosci, 1999, 11: 1554-1566.

[5] Petrova P S, Raibekas A. A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. Journal of Molecular Neuroscience, 2003, 20(3): 173-187.

[6] Lindholm P, Voutilainen M H, Laurén J, et al. Novel neurotrophic factor cdnf protects and rescues midbrain dopamine neurons in vivo. Nature, 2007, 448(7149): 73-77.

[7] Voutilainen M H, Back S, Porsti E, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of parkinson's disease. The Journal of Neuroscience, 2009, 29(30): 9651-9659.

[8] 徐巳奕, 包映晖, 江基尧. 神经营养因子与血脑屏障的研究进展. 中华神经医学杂志, 2005, 4(1): 92-94. Xu S Y, Bao Y H, Jiang J R. Research progress of neurotrophic factors and blood-brain barrier. Chinese Neuromedicine Journal, 2005, 4(1): 92-94.

[9] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988, 55(6):1179-1188.

[10] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6):1189-1193.

[11] Vives E, Brodin P, Lebleu B. A truncated hiv-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem, 1997, 272(25): 16010-16017.

[12] Baker S A, Baker K A, Hagg T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci, 2004, 20: 575-579.

[13] Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. International Journal of Clinical and Experimental Medicine, 2010, 3: 33-40.

[14] 王岚,孙圣刚,曹学兵. 内质网应激及其相关性凋亡在多巴胺能神经元选择性变性死亡中的作用. 中华老年医学杂志, 2006, 25: 863-867. Wan L, Sun S G, Cao X B. Effects of endoplasmic reticulum stress and its related apoptosis on selective death of dopaminergic neurons. Chinese Journal of Geriatrics, 2006, 25: 863-867.

[15] Kordower J H. Neurodegeneration prevented by lentiviral vector delivery of gdnf in primate models of parkinson's disease. Science, 2000, 290(5492): 767-773.

[16] Grondin R, Zhang Z M, Yi A, et al. Chronic, controlled gdnf infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain, 2002, 125: 2191-2201.

[17] Barker R A. Continuing trials of gdnf in parkinson's disease. Lancet Neurology, 2006, 5(4): 285-286.

[18] Lindholm P, Peranen J, Andressoo J O, et al. Manf is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci, 2008, 39(3): 356-371.

[19] Petrova P S, Raibekas A, Pevsner J, et al. Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases. Progress in Brain Research, 2004, 146: 168-183.

[20] Lindholm P, Saarma M. Novel CDNF/MANF family of neurotrophic factors. Developmental Neurobiology, 2010, 70(5): 360-371.

[21] Storch A, Kaftan A, Burkhardt K, et al. 6-hydroxydopamine toxicity towards human sh-sy5y dopaminergic neuroblastoma cells: Independent of mitochondrial energy metabolism. Journal of Neural Transmission, 2000, 107: 281-293.

[22] Apostolou A, Shen Y, Liang Y, et al. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Experimental Cell Research, 2008, 314: 2454-2467.

[23] Chauhan A, Tikoo A, Kapur A K, et al. The taming of the cell penetrating domain of the hiv tat: Myths and realities. Journal of Controlled Release, 2007, 117(2): 148-162.

[24] Kilic U, Kilic E, Dietz G P, et al. Intravenous tat-gdnf is protective after focal cerebral ischemia in mice. Stroke, 2003, 34(5): 1304-1310.

[25] 蒋晖, 金卫林, 金大地, 等. 可穿越血脑屏障的新型神经生长因子tat-BDNF神经保护作用研究. 中华医学杂志, 2011, 91(25): 1786-1792. Jiang H, Jin W L, Jin D D, et al. Neuroproctecfion of a neotype transactivating-brain-derived neurotrophic factor fusion protein with penetrafiag activity of blood-brain barrier. Chinese Medical Journal, 2011, 91(25): 1786-1792.

[26] 韩暄, 牛朝诗. 新型神经营养因子CDNF/MANF家族与帕金森病. 立体定向和功能性神经外科杂志, 2011, 24(5): 313-316. Han X, Niu C S. Novel CDNF/MANF family of neurotrophic factor and Parkinson's disease. Stereotaxic and Functional Neurosurgery Magazine, 2011, 24(5): 313-316.

[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[3] FENG Zhao,LI Jiang-hao,WANG Jia-hua. Functional Analysis of RpRPL22, a Ribosomal Protein Homologous Gene, in the Symbiotic Nodulation Process of Robinia Pseudoacacia[J]. China Biotechnology, 2021, 41(7): 10-21.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[6] TANG Yue-wei,LIU Zhi-ping. Drug-target Affinity Prediction Based on Deep Learning and Multi-layered Information Fusion[J]. China Biotechnology, 2021, 41(11): 40-47.
[7] GUO Guang-chao,ZHOU Yu-yong,CAO San-jie,WU Yao-min,WU Rui,ZHAO Qin,WEN Xin-tian,HUANG Xiao-bo,WEN Yi-ping. The Study on the Effect of NS2A-C60A Site Mutation of Japanese Encephalitis Virus on Its Biological Characteristics[J]. China Biotechnology, 2020, 40(9): 1-10.
[8] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[9] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[10] CHU Yu-qi,LU Fei-fei,LIU Yang,HE Fang,WANG Da-zhuang,CHEN Li-jiang. Interaction between Protein Corona and Nanoparticles[J]. China Biotechnology, 2020, 40(4): 78-83.
[11] WANG Ke-ru,ZHU Hong-liang. Functions of RNA Editing Factors and Its Mechanisms in Plant Organelles[J]. China Biotechnology, 2020, 40(3): 125-131.
[12] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[13] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[14] ZHU Tong-tong,YANG Lei,LIU Ying-bao,SUN Wen-xiu,ZHANG Xiu-guo. Purification and Crystallization of PcCRN20-C from Phytophthora capsici[J]. China Biotechnology, 2020, 40(1-2): 116-123.
[15] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.