Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (03): 100-105    DOI:
    
The Application of Genome Shuffling in Developing New Metabolites
ZHENG Lian-bao, QIU Juan-ping
College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Download: HTML   PDF(847KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Genome shuffling is a new-type technology based on protoplast fusion and recursive protoplast fusion. With the development and mature of genome shuffling, many new metabolites have been obtained through this technology, which demonstrates a promising prospect for genome shuffling to be a way to develop new metabolites. The new metabolites developed by genome shuffling technology are focused, including metabolites from activation of silent genes, new antibiotics from introduction of single enzyme gene, hybrid antibiotics from exchange of gene modules and new materials from replacement of precursor gene.The prospect of this technology is also discussed.



Key wordsGenome shuffling      New metabolites      Silent genes     
Received: 24 November 2011      Published: 25 March 2012
ZTFLH:  Q78  
Cite this article:

ZHENG Lian-bao, QIU Juan-ping. The Application of Genome Shuffling in Developing New Metabolites. China Biotechnology, 2012, 32(03): 100-105.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I03/100


[1] Fabbretti A,Gualerzi C O,Brandi L.How to cope with the quest for new antibiotics.Turin Special Issue:Biochemistry for Tomorrow’s Medicine,2011,585(11):1673-1681.

[2] Tseng H K,Perfect J R.Strategies to manage antifungal drug resistance.Expert Opin Pharmacother, 2011,12(2):241-256.

[3] Shapiro R S,Robbins N,Cowen L E.Regulatory circuitry governing fungal development,drug resistance,and disease.Microbiol Mol Biol Rev,2011,75(2):213-267.

[4] Handelsman J,Rondon M R,Brady S F,et al.Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products.Chemistry & Biology,1998,5:245-249.

[5] Imhoff J F,Labes A,Wiese J.Bio-mining the microbial treasures of the ocean: new natural products.Biotechnol Adv,2011,29(5):468-482.

[6] Menzella H G,Reeves C D.Combinatorial biosynthesis for drug development.Curr Opin Microbiol,2007,10(3):238-245.

[7] Zhang Y X,Perry K,Vinci V A.Genome shuffling leads to rapid phenotypic improvement in Bacteria.Nature,2002,415:644-646.

[8] Stephanopoulos G.Metabolic engineering by genome shuffling-two reports on whole-genome shuffling demonstrate the application of combinatorial methods for phenotypic improvement in bacteria.Nature Biotechnology,2002,20(7): 666-668.

[9] Jin Z H, Xu B,Lin S Z,et al.Enhanced production of spinosad in Saccharopolyspora spinosa by genome shuffling.Appl Biochem Biotechnol,2009,159(3):655-663.

[10] Gendy M M,Bondkly A M.Genome shuffling of marine derived bacterium Nocardia sp.ALAA 2000 for improved ayamycin production.Antonie Van Leeuwenhoek,2011,99(4):773-780.

[11] John R P, Gangadharan D,Madhavan Nampoothiri K.Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchy wastes.Bioresour Technol,2008,99(17):8008-8015.

[12] Wang C,Zhang X L,Chen Z,et al.Strain construction for enhanced production of spinosad via intergeneric protoplast fusion.Canadian Journal of Microbiology,2009,55:1070-1075.

[13] Hopwood D A,Chater,Fresh K F.Approaches to Antibiotic Production.Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1980,290:313-328.

[14] Jian X,Pang X,Yu Y,et al.Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22.Antonie Van Leeuwenhoek,2006,90(1):29-39.

[15] 袁德军,周启.农抗5102产生菌原生质体融合育种的研究Ⅳ.融合子FR-008的验证及其产生新活性物质的分离和鉴别.生物工程学报,1991,7(2):142-147. Yuan D J,Zhou Q.Studies on fusion breeding of protoplasts from antibiotic producing strain 5102Ⅳ.Verification of fusant FR-008,Isolation and characterization of Its new antimicrobial substance.Chinese Journal of Biotechnology,1991,7(2):142-147.

[16] 黄曦,邓子新.多烯大环内酯类抗生素——链霉菌FR-008代谢产物的研究.中国抗生素杂志,1999, 24(5):329-333. Huang X,Deng Z X,Liao R A.Characterization of the hepaene macrolide antibiotic produced by Streptomyces sp.FR-008.Chinese Journal of Antibiotics,1999,24(5):329-333.

[17] Hu Z,Bao K,Zhou X,et al.Repeated polyketide synthase modules involved in the biosynthesis of a heptaene macrolide by Streptomyces sp.FR-008.Mol Microbiol,1994,14(1):163-172.

[18] Chen S,Huang X,Zhou X,et al.Organizational and mutational analysis of a complete FR-008/Candicidin gene cluster encoding a structurally related polyene complex.Chem Bio,2003,10(11):1065-1076.

[19] Wang M Z,Liu S S,Li Y Y,et al.Protoplast mutation and genome shuffling induce the endophytic fungus Tubercularia sp. TF5 to produce new compounds.Current Microbiology,2010,61:254-260.

[20] Li Y,Lu C,Hu Z,et al.Secondary metabolites of Tubercularia sp.TF5,an endophytic fungal strain of Taxus mairei.Nat Prod Res,2009,23(1):70-76.

[21] Ohnishi Y,Ishikawa J,Hara H,et al.Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350.Journal of Antibiotics,2008,190(11):4050-4060.

[22] Kudo F,Eguchi T.Biosynthetic genes for aminoglycoside antibiotics.The Journal of Antibiotics,2009,62:471-481.

[23] Yamashita F,Hotta K,Kursawa S,et al.New antibiotic-producing streptomycetes,Selected by antibiotic resistance as a marker.I.New antibiotic production generated by protoplast fusi on treatment between Streptomyces griseus and S.tenjimariensis.Journal of Antibiotics,1985,28:58-63.

[24] 杨毓芬,李焕娄,金文藻,等.新蒽环类化合物F301A的分离鉴别及活性测定.中国抗生素杂志,1998,23(2):104-106. Yang Y F,Li H L,Jin W Z,et al.Isolation,structure elucidation and determination of bioactivity of F301A.Chinese Journal of Antibiotics,1998,23(2):104-106.

[25] Li X M,Novotná J,Vohradsky J,et al.Major proteins related to chlortetracycline biosynthesis in a Streptomyces aureofaciens production strain studied by quantitative proteomics.Appl Microbiol Biotechnol,2001,57:717-724.

[26] Wendell G,Iara R S,Elaine A A,et al.Three new complexes of platinum(II) with doxycycline,oxytetracycline and chlortetracycline and their antimicrobial activity.Journal of the Brazilian Chemical Society,2006,17(8):1627-1633.

[27] 徐京宁,潘铁英,王伟,等.链霉菌种间融合重组子产生的抗生素的分离和化学结构的确认.中国抗生素杂志,1996,21(1):1-4. Xu J N,Pan T Y,Wang W,et al.Isolation and structural assignmenet of the antibiotic produced by recombinant.Chinese Journal of Antibiotics,1996,21(1):1-4.

[28] Fleck W F,Schlegel B,Ihn W.New anthracycline antibiotics produced by interspecific recombinants of streptomycetes.IV.Antimicrobial Activity of Iremycin.Z Allg Mikrobiol,1982,22(5):349-353.

[29] Carolina C M,Tania E C Z,Gabriela R E.Penicillin and cephalosporin production:a historical perspective.Rev Latinoam Microbiol,2007,49:88-98.

[30] Chen C C,Feng Y S,Chyau C C,et al.Method for producing novel beta-lactam antibiotic from protoplast fusion strain.US,20050054031A1,2005-3-10.

[31] Burg R W,Miller B M,Baker E E,et al.Avermectins,new family of potent anthelmintic agents:producing organism and fermentation.Antimicrob Agents Chemother,1979,15(3):361-367.

[32] Kim K R,Kim T J,Suh J W.The gene cluster for spectinomycin biosynthesis and the aminoglycoside-resistance function of spcM in Streptomyces spectabilis.Curr Microbiol,2008, 57(4):371-374.

[33] 许国旺,路鑫,杨胜利.代谢组学研究进展.中国医学科学院学报,2007,29(6):701-711. Xu G W,Lu X,Yang S L.Recent advances in metabonomics.Acta Academiae Medicinae Sinicae,2007,29(6):701-711.

[34] Nicholson J K,Lindon J C,Systems biology:metabonomics.Nature,2008,455:1054-1056.

[35] Lindon J C,Holmes E,Nicholson J K.Metabonomics and its role in drug development and disease diagnosis.Expert Rev Mol Diagn,2004,4(2):189-199.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[3] HUANG Jun, WU Ren-zhi, CHEN Ying, LU Zhi-long, CHEN Xiao-ling, CHEN Dong, HUANG Ri-bo. Screening and Breeding of high Ethanol-producing Strains by Genome Shuffling[J]. China Biotechnology, 2014, 34(7): 56-62.
[4] XUE Zheng-lian, LIU Yang, WANG Zhou, MA Qi-ya, ZHAO Shi-guang, SU Yan-nan. Breeding of Esterifying Enzyme-producing Bacillus licheniformis by Genome Shuffling[J]. China Biotechnology, 2013, 33(8): 45-50.
[5] WANG Zhou, XUE Zheng-lian, MA Qi-ya, SU Yan-nan, ZHAO Shi-guang. Breeding of Phospholipase A1-producing Strains by Genome Shuffling[J]. China Biotechnology, 2013, 33(10): 59-66.
[6] . The applications and progress of genome shuffling[J]. China Biotechnology, 2010, 30(07): 0-0.
[7] MAO Yu, WANG Dan, LI Jiang, GENG Jian-Min, HUANG Tie-Bin. Protoplast Preparation and Regeneration of Actinobacillus succinogenes[J]. China Biotechnology, 2010, 30(06): 103-108.
[8] MAO Yu, WANG Dan, HUANG Tie-Bin, GENG Jian-Min. Application of Microbial Protoplast Fusion Technology in Genetic Breeding[J]. China Biotechnology, 2010, 30(01): 93-97.
[9] . Whole genome shuffling to enhance activity of fibrinolytic enzyme-producing strains[J]. China Biotechnology, 2007, 27(10): 39-43.